Understanding Plume Bending at Grotto Vent on the Endeavour Segment, Juan de Fuca Ridge

Karen G Bemis¹, Guangyu Xu¹, Jeff Rabinowitz², Peter A Rona¹, Darrell R. Jackson³, Christopher D Jones³

¹IMCS, Rutgers University, New Brunswick, NJ, United States. ²ECE, Rutgers University, New Brunswick, NJ. ³APL, University of Washington, Seattle, WA, United States.

COVIS acoustic imaging

Processes Influencing Bending

In a fluctuating plume, the instantaneous centerline is not steady

Estimating Bending

Predicting plume bending

Comparison with Tidal Currents

Given that this image is averaged only over 2 samples, the curve may be due to fluctuations

Interaction with cross-flow (varying regimes)

W >> U W ~ U W << U

Doppler data shows evidence of forced entrainment!

When plumes merge, vertical velocity increases reducing response to currents.

But entrainment into larger plume can cause smaller to bend more.

Support: NSF OCE 0824612; OCE 0825088

Both along-axis currents and plume bending show a strong semi-diurnal (12.5 hr) periodicity. The plume bending may also show a longer (~3-5 day) periodicity most evident in the cross-axis currents.

Their spectra suggest tidal currents are dominate forcing of bending

Direction and magnitude of bending vary a lot.

Top of North Tower (main plume)

Small plume site

(COVIS's viewpoint with ping)

(COVIS acoustic imaging)

(COVIS's viewpoint with ping)

(COVIS acoustic imaging)

(COVIS acoustic imaging)

(COVIS acoustic imaging)

(COVIS acoustic imaging)

(COVIS acoustic imaging)