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fMRI is an imaging technique that is used to understand brain functionality. Scans are 

taken at intervals as a patient performs some mental tasks, resulting in hundreds of 

datasets. It is an increasingly popular technique in fields ranging from medicine, 

psychology or even marketing and economics. However, these images tend to be noisy 

and new packages are constantly being developed to analyze and filter these large 

datasets. Because of the large data size and many analysis parameters, comparisons 

between results or between experiments are difficult. We present a visualization tool that 

allows interactive comparison of different analyzed datasets. Such analyzed datasets can 

be results of different analytic methods used in fMRI analysis, on data from one or more 

ii 



subjects and/or one or more experiments. We treat every analysis result as a functional 

clustering of voxels mapped into brain space and employ visualization techniques to 

allow the user to interactively explore the similarity and differences between the different 

datasets. This can provide valuable insight into the data or the analysis methodologies 

being studied. Thus, the tool can be used as a visualization interface of a data mining 

engine and could also support a "query-by-example" approach to fMRI data retrieval. 
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Chapter 1 

Introduction and Motivation 

Functional Magnetic Resonance Imaging (fMRI) is a medical imaging technique that 

captures the brain’s dynamic behavior. In the last few years, it has been used extensively 

for both clinical applications and psychological research to map functions to specific 

regions of the brain. Unlike PET (Positron Emission Tomography), it does not require 

injecting the patient with radioactive isotopes, the contrast being provided by the varying 

concentration and magnetic properties of hydrogen atoms in the human body. 

An fMRI dataset consists of a sequence of 3D images (volumes) of the subject’s 

brain taken over a short period of time (a few minutes) while the subject is performing a 

given task. The experiment is designed so that certain brain functions are used more than 

others, allowing one to create a direct mapping of functionality to brain regions that are 

highlighted in the collected images. 

With the increased use of functional imaging techniques, a number of different 

strategies of analyzing this type of data were developed. The most widely used method is 

known as the General Linear Model (GLM) where one assumes a pattern of activation 

and then checks each voxel in the image to see whether its behavior is consistent with the 

assumed activation model. The result of this analysis is a probability map showing the 
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chance that the brain region corresponding to each voxel is participating in a task-related 

activity. Another set of analysis methods use no assumption about activation patterns. By 

looking at the intensity measured in each of the collected 3D images, they try to group 

voxels with similar behavior into distinct classes and then label them as task-related or 

not. Clustering, independent component analysis (ICA), principal component analysis 

(PCA) and neural networks are some of the methods from this category.  

With all the different analysis methods available and others constantly developing, it 

is increasingly difficult to compare these methodologies and asses their strengths and 

weaknesses. What analysis method should be used for a given set of experimental data ? 

Why is one method better than another ? For the same experimental data, will two 

analysis methods provide the same results ? These are some of the questions we are 

trying to address by developing a visualization tool that allows for comparisons between 

the outcomes of different methodologies. 

Large databases containing thousands of fMRI scans are already accessible to the 

research community: the Brain Image Database (BRAID) database by Letovsky et 

al.[25], the fMRI Data Center (fMRIDC) by Van Horn et al.[37], the BrainMap database 

by Fox et al.[13] , etc. Data retrieval applications retrieve datasets based on search 

criteria specified by the user, such as text descriptions of the datasets or of the final 

analysis results. However, one would like to browse the results of such a query and 

subjectively asses the relevance of the presented results. The visualization tool developed 

here allows one to investigate the results of a query in the same way one would inspect 

the results of a web search by clicking on the links presented as relevant to the search 

criteria. In the case of a brain-image search, one would like to “see” the relevant results 
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and decide whether they present the similarity that one is looking for. Although finding 

an fMRI experiment in a database based on similarity to a given exemplar is still an 

active area of research, a visualization tool that allows for visual assessment of similarity 

could provide a front-end for any such database engine. 

The goal of this work is to create a comparison tool that is completely independent of 

the present and future analysis methods. The ultimate result of any analysis methodology 

for fMRI data consists of a labeling of voxels in the brain as relevant or not relevant to 

the experimental task, similar to clustering the voxels in the brain into only two clusters: 

“interesting” and “not interesting”. Thus, we treat any analytic result as a labeling or 

clustering of voxels in brain space, but not limited to only two clusters. The tool provides 

an easy to use interface to query the similarity between clusters in two or more analyzed 

datasets and a fast visualization module that allows easy mapping of the relevant clusters 

to spatial locations in brain. The datasets being compared can represent results of 

different analysis methods, query and result datasets from a data retrieval environment or 

data from a patient during a clinical trial that involved multiple scans. 

A comparison tool can help clinicians and psychologists evaluate different analysis 

methods without in-depth knowledge of the underlying processing techniques. The end-

results can be easily compared or cross-referenced with functional regions in the brain. 

Furthermore, patient response to therapy can be evaluated by comparing scans taken at 

regular time intervals during a recovery process.  

Comparing results of different analysis methods is also an important component in 

the development of new analysis methodologies for fMRI datasets. Developers of new 

analysis algorithms can compare their results with other well-established methodologies 
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that are widely accepted in the field, allowing one to evaluate the new algorithm in terms 

of the final results it produces. 

In the next chapter we present some background on fMRI data acquisition and the 

analysis methods most frequently used in the scientific community. Then we describe the 

approach and the implementation of the tool we have developed to enable comparison 

between different analysis results.  

1.1 Contributions 

In this work we have developed a real-time visualization tool that allows interactive 

exploration and comparison of the results of fMRI analysis. This is useful in comparing 

different methodologies or comparing different subjects. The tool allows quantitative and 

qualitative exploration of the similarities and differences present in the compared datasets 

providing insight into the underlying data and analysis methodology. It is completely 

decoupled from any existing analysis tool and can accommodate various data formats. As 

we will show in the discussion section, the proposed tool can be successfully used in a 

query-by-example approach to data retrieval from a database of fMRI studies. 
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Chapter 2 

Background on fMRI and fMRI Analysis Methods 

Magnetic Resonance Imaging (MRI) has allowed scientists and physicians to study the 

structure of the living human body in a safe and non-invasive manner. A large proportion 

of the human body (about 70% of its weight) is composed of water, and different tissue 

types contain different amounts of water. Each of the hydrogen atoms in the water 

molecule is a tiny magnetic dipole; when placed in a very strong magnetic field (about 

50,000 times stronger than the Earth’s magnetic field) each of these tiny dipoles will 

align themselves with the external magnetic field. A short pulse of energy perturbs these 

tiny magnets from their preferred orientation and as they return to their initial orientation 

they give off small amounts of energy which are detected and amplified by a receiver coil 

placed around the head. As different tissue types contain different amounts of water, the 

intensity of the MRI signal varies from one region to another, providing a detailed image 

of the internal structure of the body (the brain in our case). The resolution of the MRI 

images is very good, with about 0.5mm per image element (pixel or voxel). 

Although MRI images provide valuable information about the internal structure of the 

brain, they do not say anything about how the brain functions. Functional MRI (fMRI) is 

a new technique aimed at mapping brain functionality. 
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2.1 Functional Magnetic Resonance Imaging (fMRI) 

Functional Magnetic Resonance Imaging (fMRI) is a medical imaging technique that 

captures brain functionality by measuring the change in oxygen concentration in the 

blood that flows into different parts of the brain as the subjects performs some task. The 

tasks performed by subjects are carefully designed to emphasize one or few functions or 

brain areas.  

The fMRI methodology provides information about brain activity by measuring and 

recording the side effects of the electrical brain activation. Instead of directly measuring 

the brain activity, it reveals the local changes in blood oxygenation in the brain tissue, 

which is the direct result of brain activity. It is known that some brain functions are 

localized in different regions of the human brain. As brain areas become active during a 

specific task there is a local increase in the volume of fresh oxygenated blood that flows 

in that area to provide the harder working neurons with the energy they need. However, 

the increase in local oxygen concentration is not accompanied by an increase of the same 

magnitude in oxygen consumption by the underlying brain tissue. As a result, an overall 

increase in blood oxygenation can be observed in the activated area. The magnetic 

properties of the hydrogen atoms differ slightly between the areas near oxygenated blood 

and areas near de-oxygenated blood and the fMRI signal reflects this increase in oxygen 

levels by an increase in signal intensity, which is why the collected signal is also called 

BOLD (Blood Oxygenation Level Dependent) signal. Figure 1 shows schematically the 

causal relations between brain activation and the fMRI signal. 
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Brain activity 

 

Local increase in fresh blood volume flowing 
in the activated area 

Local increase in blood 
oxygenation 

Increase in fMRI signal strength 

Figure 1 Causal relations between brain activity and fMRI BOLD signal. 

 
The fMRI machine consists of a specially modified MRI scanner (the magnet) that 

can produce functional images by detecting these small signal intensity variations due to 

changing oxygenation levels.  

At this stage in the evolution of the fMRI technology, the spatial resolution of the 

functional images is quite low, typical values for the spatial dimensions of a voxel are 

3mm x 3mm x 5mm. A complete functional image of the brain is taken every 2 to 4 

seconds. While it is possible to reduce the time required for a scan by focusing on a 

narrower region of the brain, the scan time is clearly an order of magnitude bigger than 

the neuron firing time (activation) in a normal brain which is in the order of milliseconds. 

However, fMRI does not probe the brain activation directly, but one of its aftereffects. 

The increase in fresh blood flow in an activated area, also known as the hemodynamic 

response, takes place gradually, reaching a maximum at 4 to 6 seconds after the start of 

the neural activity and completely disappearing only 10 to 15 seconds after the activation 

[3]. This slow hemodynamic process is what makes the activation visible even on such 
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low temporal resolution images. Although there is some debate in the scientific 

community regarding the exact shape of the hemodynamic response function, Figure 2 

shows the gamma function model proposed by Cohen in [3]. 

 

 
Neural activity 

onset time 

547.060.8452.0
t

etSi
−

⋅⋅= , where Si is the signal intensity. 

Figure 2 Hemodynamic response function modeled as a gamma function 

proposed by Cohen in [3]. 

 
The subject lies inside this machine and is given a task to perform. First, a high 

resolution static MRI image (a whole 3D volume) of the subject’s brain is taken; this is 

also known as the anatomical image and it is used for normalization. Then, the subject is 

asked to perform a series of tasks, during which the magnet takes 3D functional images 

of the patient’s head at regular intervals, usually once every 2 seconds. It is common for 

such a session to last for a few minutes (five to ten minutes). Depending on the 

experiment, the task may involve a number of stimuli that the patient is supposed to react 

to. For example, one common task is known as the oddball task: the subject is presented 

with a set of pictures at regular time intervals and asked to react to the “oddball” picture 
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by pressing a button. The “oddball” picture may be a face among a series of circles. The 

time of appearance of the “oddballs” is recorded and provides the stimulus onset times. 

The onset times are used in most analysis packages to help process the data. 

2.1.1 The Data 

 

 

Figure 3 A slice from an fMRI dataset (oddball). The intensities of three voxels 

over time are shown on the right. The times when the “oddballs” 

were shown are represented with vertical lines on the graph. 

 
An fMRI dataset contains a number of 3D images (volumes) of the subject’s brain, taken 

over the entire period of the experiment. The size of each volume is machine dependent 

but a typical value is 64x64x32. Anywhere from tenths to hundreds of volumes can be 

generated in a single session. For example, our “oddball” test described above contains 

205 volumes taken over a period of 410 seconds, each having 64x64x16 voxels. Clearly, 

each experiment is different and will have a different number of volumes. Every volume 

is a scalar field representing the signal intensity at each voxel at the moment the image 

was taken. The series of intensity values corresponding to a single voxel position 

throughout the experiment forms the time series of that voxel. Thus an fMRI dataset can 

be thought of as a series of hundreds of volumes or a set of hundreds of thousands of 
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individual voxel time series. Figure 3 shows a slice from one of the images in the 

“oddball” dataset and the corresponding time series of three randomly selected voxels. 

The times when the “oddballs” were shown are represented with vertical lines on the 

graph. 

2.2 fMRI Analysis Methods 

Since fMRI measures and records the hemodynamic response to brain activation rather 

than the brain activity itself, extensive pre-processing and analysis methods have been 

employed to recover the original brain activation pattern from the acquired BOLD signal. 

fMRI analysis methods are usually grouped into two broad categories: hypothesis-driven 

and data-driven.  

In hypothesis-driven methods, an a-priori model of activation is assumed and the data 

is checked to see how closely it corresponds to this model. The stimulus onset times are 

recorded and used for this kind of analysis. These onset times represent the initial points 

at which a change in the acquired signal is expected. In Figure 3, the vertical bars on the 

graph represent the stimulus onset times for the “oddball” experiment. In addition, a pre-

defined hemodynamic response function is used to predict the effects of the brain 

activity. One example is the hemodynamic function showed in Figure 2. The convolution 

of the hemodynamic response function and the stimuli onset function provides the 

expected shape and duration of the BOLD signal for a voxel that shows activation in 

relation to the experiment that was performed. The next step uses statistical methods to 

decide whether the time series of a particular voxel behaves as expected for a task-related 
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activated voxel or not. 

The most widely used package for analyzing fMRI sequences is Statistical Parametric 

Mapping (SPM) [33]. SPM uses hypothesis testing in the form of a generalized linear 

model (GLM) [16]. In this approach, a parametric statistical model of activation is 

assumed at each voxel location. The analysis is totally dependent on a hypothesized 

hemodynamic response function, which relates the dynamics of blood flow in brain 

capillaries (and the observed oxygen surplus or depletion) to the stimulus function built 

from the onset-times recorded during the experiment. The parameter values of a linear 

regression are estimated at each voxel location by analyzing the behavior of the voxel 

across the entire time sequence of the experiment. A statistical test (F- or t-test) is 

performed for each voxel to produce the measure of fit between the postulated activation 

model and the actual behavior of the voxel over time. Results are compiled into a 

probability map containing a value at each voxel. The 4D data is thus reduced to a 3D 

scalar field containing probabilities for each voxel. A high value indicates a high 

probability that the voxel’s behavior over time is linked with the activation model and the 

performed task. Thresholding the probability map at high values selects those voxels that 

most likely show task-related activation during the experiment. SPM99 [33] is a self 

contained and lock-step program that reads in the data and produces the probability map.  

There are many other hypothesis-driven functional MRI analysis tools based on the 

same GLM approach. These include: AFNI (Analysis of Functional NeuroImages) [4], 

FSL (FMRIB Software Library) [14], VoxBo [39], RUMBA (Rutgers University Mind 

Brain Analysis) [31], etc.  

The second category of methods is data-driven or exploratory methods [35] where no 
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prior hypothesis about the activation pattern of a voxel is assumed. Using only the 

intensity signal over time, the data-driven methods attempt to classify voxels into distinct 

classes based solely on signal characteristics. The data driven methods include 

Independent Component Analysis (ICA), Principal Component Analysis (PCA), 

Canonical Correlation (CCA) and clustering.  

ICA, PCA and CCA attempt to recover independent mixed source signals from 

recordings at several locations (this is also called the blind separation problem). In the 

case of brain images, the independent sources could be different functional areas of the 

brain and the recordings are the intensity of the signal over time as measured at different 

locations (at every voxel). The methods attempt to identify a number of uncorrelated 

signals that could have produced the observed data. Additional constraints differentiate 

between these methods: ICA tries to maximize the statistical independence of the 

components; PCA imposes the orthogonality constraint on the source, while CCA tries to 

identify components that have maximum autocorrelation [15]. 

Clustering methods are extensively used for fMRI analysis both for post-processing 

the results of the hypothesis-driven analysis (where spatial clusters are found after 

thresholding the t-test from SPM processing for example) or as a data-driven exploratory 

method. In the case of exploratory methods, after identifying all the different clusters 

based on signal patterns, the correlation with the stimulus function (or the activation 

function) is used to rule out clusters that do not seem to capture task-related activity.  

There are several possible bases for clustering. In one, each voxel is taken to be a 

point in the n-dimensional space where n is the number of scans in the fMRI sequence. A 

point in n-dimensional space is identified by its n coordinates taken to be the intensities 
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of the BOLD signal at that voxel at each of the n scans in the experiment. The resulting 

clusters have a meaning in terms of brain functionality, since voxels behaving in a similar 

manner throughout the scan will map to neighboring points in this space. It was shown in 

[19] that clustering on the cross-correlation between stimulus and voxel behavior is more 

robust than clustering on raw fMRI time series. The output is the set of clusters such that 

all voxels in a set have similar correlations with the stimuli pattern. New clustering 

techniques are continually being developed, as are improvements to existing methods e.g. 

[8][18]. 

2.2.1 Normalization 

The two data analysis categories do not differ in the extensive pre or post processing that 

is required in order to formulate a conclusion from such an experiment. Since brain size 

and shape varies considerably among different subjects it is imperative to have a 

standardized coordinate system to identify regions of the brain that are considered to be 

active during a given experiment. The Talairach brain was published by Talairach and 

Tournoux [34] and introduced three important innovations: (a) a coordinate system fixed 

to anatomical landmarks in the brain; (b) spatial transformations to map one brain to 

another; and (c) an atlas of the standard brain with anatomical labels [1].  

The Montreal Neurological Institute (MNI) created the MNI template brain based on 

the average of several hundred MRI scans of normal brains. The International 

Consortium of Brain Mapping (ICBM) adopted the MNI template as an international 

standard. Locations in Talairach and MNI brains can also be mapped to the well-known 

(to neurologists) Brodmann areas, which are a classification of brain areas based on tissue 
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structure [1].  

Mapping the data to the standard space is a two-step process: first, the raw data has to 

be aligned with the subject’s high-resolution anatomical image (MRI) taken at the 

beginning of the experiment, a phase called co-registration; then, in the normalization 

phase, a transformation that maps the high-resolution image into the standardized space is 

computed. The transformations resulting from each of the two steps (TfMRI to anatomical and 

Tanatomical to standard are concatenated into a single transformation that transforms the fMRI 

data into the standardized space: TfMRI to standard. Figure 4 illustrates this process. 

 

 

Normalization 
(anatomical to standard) 

 Anatomical (MRI) data 
resolution: 512x512x176 

 Standard template (MNI)
resolution: 79x95x68 

 Co-registration 
(fMRI to anatomical) 

TfMRI to anatomical T anatomical to standard

TfMRI to standard

fMRI data 
resolution: 64x64x32 

Figure 4 Registration of fMRI data to the standardized space. 

 
This process can be done either as a pre-processing step or as a post-processing step; 

in the later case only the resulting activated regions are mapped to the normalized space. 

Whatever the methodology, the ultimate goal of any type of fMRI analysis is to 

attempt to partition the brain itself into regions that are somehow related to the 

experiment and regions that are not. As discussed above, a number of different methods 

have been devised to accomplish this partition and comparing the efficacy of these 
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methods is non-trivial, particularly because the “underlying truth” is typically unknown. 

Researchers thus face many tools to use, and no good criteria on which to make a 

selection. Being able to compare the results of different algorithms on real datasets would 

be useful in understanding different techniques and determining their efficacies. The 

approach taken here is general enough to allow one to use the results of any kind of 

analysis methodology in this process. 
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Chapter 3 

Related Work 

In the fMRI community, research is focused on developing new analysis methods or 

improving the existing methodologies. The majority of researchers use the hypothesis-

driven approach in the form of a generalized linear model (GLM). All these tools like 

SPM, AFNI, FSL and RUMBA have limited visualization capabilities consisting of axial 

views of projections of the entire dataset or individual slices only. Maybe the most 

important aspect of the analysis of an fMRI dataset is the mapping of the activated 

clusters to a set of labels identifying anatomical and/or functional regions of the human 

brain like the Brodmann regions or Talairach labels. This mapping is performed by a 

table look-up using the normalized coordinates of the activated regions and the results are 

presented as a table with a cluster identifier, the size of the cluster and the associated 

coordinates. While this is a rigorous way of presenting the information, a visual 

representation of this mapping would be more intuitive and easy to parse. 

Several software packages were developed for visualization of MRI and fMRI data. 

Among these, BrainVISA/Anatomist provides pipeline building facilities for processing 

and visualization of brain imaging data; MRIcro is a visualization package that supports a 

variety of medical image formats. 
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Since in our approach, all analysis results are considered to be clusters in the three-

dimensional space of the brain, a related topic is visualization of data clustering in three 

or more dimensions, a task useful in data mining. In [36], Tzeng and Ma presented an 

information visualization technique for classification of multi-dimensional data. The 

application is a front-end for a multi-dimensional classification (clustering) engine. An 

easy-to-use user interface provides not only visualization of the classification results, but 

also allows the user to interact with the classification algorithm for parameter tuning 

using operations like splitting a class into finer components, or merging two related 

classes. In [5], Davidson presents a particle-based framework for visualization of multi-

dimensional clustering results. The original data points and the identified cluster centers 

are represented as particles in the three-dimensional space using Multi Dimensional 

Scaling (MDS) to reduce the dimensionality. Cluster centers are mapped to points in a 3-

dimensional cube such that similar clusters are close to each other, and dissimilar clusters 

are as far apart as possible. The data points are shown as particles attracted by the cluster 

centers with forces that are proportional to the degree of membership to each cluster, 

such that the framework is useful for fuzzy clustering as well, where data points are 

assigned to more than one cluster.  

Visual exploration of multi-dimensional datasets is another related field. In particular 

in the fMRI field, the data is 4-dimensional and the result of the analysis is a 3-

dimensional map of the activation regions. XmdvTool [38][43] is a tool for visual 

exploration of multivariate datasets. It employs several multi-dimensional data 

visualization techniques such as: scatter plots, glyphs, parallel coordinates or 

dimensionality reduction. It provides tools to highlight data of interest like the n-
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dimensional brush. A Visual Hierarchical Dimension Reduction (VHDR) methodology 

described in [44], also incorporated in XmdvTool can be used to reduce the 

dimensionality of the data, allowing the user to interact with the dimensionality reduction 

algorithm in order to create meaningful visualizations in a reduced dimensional space. In 

IBM’s TableView, multi-dimensional data are represented in a dynamic table with 

dimensions represented as columns and data points shown as rows. The user can collapse 

rows/columns to focus on data of interest. 

Also related is the data mining approach, where large databases of fMRI images 

[25][37][13] are mined to find relationships between brain lesions and functional deficits 

(e.g. vision or speech deficits) [25][27], or to classify patients based on fMRI activation 

patterns [9]. At present information retrieval is usually based on text queries and 

metadata stored with each dataset. With the proposed tool it may be possible to use 

clustering and visual representation in a query by example mode that will retrieve similar 

datasets based on actual data similarity not on similar textual description. Furthermore, 

the user is allowed to interactively explore the similarities and differences between the 

retrieved datasets. More recently, Forsberg, in [12], described a visualization and query 

tool designed for the NeuroGenerator database system [28]. NeuroGenerator is a 

repository of fMRI data which collects the raw data and analyses it in a homogenous 

way, using a single analysis package. The tool described in [12] allows visual exploration 

and comparison of several analysis results and can be used to formulate queries in terms 

of both activated clusters and keywords associated with each experiment. 
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Chapter 4 

The Problem 

The large number of existing analysis methodologies for fMRI, each with their own 

advantages and disadvantages generated a mixture of data formats and difficulties in 

comparing the results of these different analyses in an intuitive way. Our goal is to 

provide scientists and algorithm developers with a visualization tool that will allow 

intuitive and rapid comparison between analysis results of different fMRI datasets 

obtained using various methodologies. The tool should have an intuitive and easy-to-use 

interface and should allow the user to formulate simple queries in order to asses the 

similarities of differences present in the examined datasets.  

For scientists, such a tool may be useful in determining which analysis method is best 

suited for their specific needs. It is known that different analysis tools may give very 

different results partly because different algorithms are used and partly because of the 

different parameter settings. One issue that was only addressed in the later versions of the 

different analysis packages was logging which can provide reproducibility of results. A 

tool for comparing results of different analysis methods and even results obtained using 

the same tool under different parameter settings provides an invaluable help in deciding 

which analysis tool to use for certain experiments. Algorithm developers looking to 
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create new analysis methodologies could also benefit from our tool by being able to 

quickly compare the results of their new algorithms with the results of recognized 

analysis tools. Examples are shown in the discussion section.  

Additionally, a tool that can highlight various similarities between two datasets can 

be used effectively as a visualization interface for an fMRI database environment. 

Assume we have a database of classified fMRI datasets, including both raw data and 

analyzed versions of each dataset. In a query-by-example approach to searching, a user 

presents the system with a new dataset and asks it to scan the database and retrieve 

similar datasets. A more general problem is the data mining problem, where the data 

mining engine is asked to find similarities in the database without a specific key to search 

for. As soon as the system produces the results of this query based on some built-in 

similarity metric, the user would like to investigate these results and subjectively asses 

how similar they are with the query dataset or among themselves. It should be no surprise 

that the user may have a different notion of similarity than the automated system. Our 

tool allows one to quickly find the similarities in the analyzed versions of these datasets, 

provided the analysis results are stored together with the raw time series. The user can 

now conclude whether the search was successful or not and maybe tune the search 

parameters for another try. Figure 5 illustrates the fMRI data mining and data retrieval 

scenario. This functionality is similar to that of a web browser: following a web search, 

the user is presented with a set of links that he or she can click and investigate whether 

the retrieved documents are relevant or not.  
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… 

Database of fMRI data: raw + analyzed

Data Mining 

Find similar  
datasets 

Query-by-example 

Find datasets 
similar to this one: 

Comparison Tool 

Results: 

… Analyzed datasets 

... 

How, Why are these 
similar ? 

Figure 5 fMRI data mining and data retrieval scenario. 

 
The same tool could potentially be used for the actual retrieval operation provided the 

analyzed versions of the datasets are also stored in the database and the similarities 

between different datasets can be quantified and ranked. 

The original idea for the development of this tool came from the difficulty of 

comparing the results of various clustering algorithms we employed on the raw fMRI 

time series. Later, the extension of the tool to include comparison of any kind of analysis 

was straight-forward. 
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Chapter 5 

Approach 

We focus our attention on providing a visualization tool that can facilitate the interactive 

exploration of analyzed fMRI datasets as well as a query-by-example approach to fMRI 

data retrieval. We use the fMRI analysis results to provide the necessary information 

needed for comparison of two datasets and we provide a spreadsheet-like interface to 

query the data. The queries are mapped back to the brain space to allow for visual 

exploration of the relationships present in the datasets.  

The notion underlying this work can be thought of as a complex extension of a Venn 

diagram, in which the overlap between two sets is shaded to call attention to it. Our 

system displays groupings or labelings of voxels, which result from various analytical 

programs. The user is allowed to visualize the groupings and determine which “overlap” 

or are similar using any one of a set of similarity metrics. The spreadsheet-like interface 

facilitates questions in an intuitive and graphical manner. 

When processing an fMRI time series, regardless of the employed methodology, one 

is interested in the set of brain voxels that are activated as a result of the experiment. 

Thus, the result of any analytical processing of an fMRI dataset can be viewed as a 

labeling of the voxels in the brain space as “interesting” (meaning that those voxels show 
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an activation pattern that is correlated with the experimental conditions) or “not 

interesting”. In consequence, we treat any analytic result as a labeling of voxels in the 

brain, and we will use the term cluster to identify a set of voxels with the same label. 

Note that the term cluster does not imply spatial connectivity or proximity among voxels 

with the same label. The term cluster is used in a functional way, to mean that voxels in 

the same cluster behave similarly, as determined by the analysis tool. Although, labeling 

voxels as “interesting” or “not interesting” seems to be the final goal of the analysis, we 

do not limit our tool to only two labels, since this distinction may not be known in certain 

phases of the processing. For example, a clustering based approach to fMRI analysis that 

works in the signal space will directly produce a label for each voxel representing the 

cluster it belongs to but the distinction “interesting” vs. “not interesting” is not known at 

this stage. A representative from each cluster will later be compared with the signal 

representing the experimental conditions and clusters that show good correlation are 

labeled as “interesting”. We believe our visualization tool can also be useful in the early 

stages of the processing especially for algorithm developers as we will show in the 

discussion section, thus our tool will support an arbitrary number of labels in each 

dataset. Additionally, we would like to support special datasets such as Brodmann 

regions or a brain atlas, which are just another labeling of voxels in the brain based on 

anatomical structures or functionality and which clearly have more than two labels. We 

will show in the discussion section how such special datasets can be used with our tool. 

Voxel labels can be assigned either by the analysis method or by our tool at the time 

the dataset is loaded. The analysis method can indicate that a set of voxels exhibits 

similar behavior by assigning them the same label. This is the case of clustering methods 
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where voxels with the same label belong to the same cluster, which usually groups voxels 

with similar signal patterns. Depending on the clustering scope, voxels in the same 

cluster may or may not be spatially connected. For example, applying the canonical sets 

algorithm [7][6] to an fMRI sequence results in a set of representative voxels for the 

entire sequence. Then, using a minimum distance classifier that works in the n-

dimensional signal space (where n is the number of scans in the experiment), every voxel 

is associated with one of these representatives. The result is a set of clusters that group 

voxels with similar behavior in time, each voxel being labeled with the number of the 

cluster it belongs to (Figure 6).  

 

 

Hypothesis-driven methods 

(SPM) 

(AFNI) 

Data-driven methods 

(K-Means) 

(Canonical Sets) 

How do these results compare? 

fMRI time series 

Figure 6 Different analysis methodologies and the kind of results they 

produce. 
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Another widely used clustering algorithm is k-means; here voxels are directly 

clustered in the signal space and the result is again a voxel labeling to the k clusters 

(Figure 6). Clustering algorithms can be applied to the raw time series (signal space) or 

cross-correlation data [19], representing cross-correlation between the voxel time series 

and the stimulus function.  

GLM analysis methods such as SPM, can also produce clusters of activated voxels, 

but the general output of such a method is a probability map. For example, an SPM 

analysis produces a parametric map describing the probability of each voxel being 

significantly correlated with the experimental conditions. Voxels that have a probability 

value above a certain threshold are considered active. It is important to support this kind 

of results since the GLM methods are the most widely used in the field. We have two 

ways of converting this type of datasets to our “labeling” requirement when loaded into 

our application: we can consider that all voxels with probability value above a specified 

threshold form one functional cluster and we can assign them the same label. At the same 

time, the voxels that fall under the threshold are discarded or assigned a different label. 

Figure 7(a) shows the result presented by SPM after thresholding the probability map.  

 

 
(a) (b) (c) 

Figure 7 Treating SPM results (a) as one functional cluster (b) or many 

functional-and-spatial clusters (c). 
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Note that the selected voxels showed in black, form several spatially coherent clusters 

but we are assigning them the same label producing one “functional cluster”.  

Since now we have control over the labeling process, we can use a simple clustering 

algorithm based on spatial location and assign different labels to the selected voxels, 

creating several “spatial-and-functional clusters”, one for each connected component that 

can be identified in the image: Figure 7(b and c). Thus the user may view an SPM-like 

result as defining a single functional cluster, or apply a subsequent clustering algorithm to 

transform it into a set of spatial and functional clusters, an approach consistent with the 

belief that well-defined regions of the brain are responsible for certain functions. To 

generalize this approach, we could apply the same clustering step to the results presented 

directly in labeled form (from clustering algorithms) and split the given functional 

clusters into several spatial-and-functional clusters. 

A formal specification of the problem dealt with in this work is as follows: given a set 

of n different fMRI datasets a …a1 n (where each a  i is a 4D dataset resulting from an 

experiment), and a set of analysis routines f …f1 m, where f (a )x i  represents the result of the 

analysis routine fx applied on dataset ai (the processed dataset), we would like to 

understand the relationship between: 

• f (a )x i  and f (a )y i : comparing results of different analysis algorithms applied to 

the same dataset. 

• f (a )x i  and f (a )y j : comparing results of different algorithms on different 

datasets. 

• f (a )x i  and f (a )y i : comparing results of one algorithm on different datasets. 
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• f (a ) x q and f (a ), f (a ), … f (a ): y 1 z 2 w k query-by-example data retrieval: 

assessing the similarity between the clusters in a query dataset f (a ) x q and the 

clusters in a number of classified datasets f (a ), f (a ), … f (a )y 1 z 2 w k  returned by 

the search algorithm.  

• f (a ), f (a ), f (a ), … f (a )x q y 1 z 2 w k : in the more general framework of data 

mining, these could be datasets returned by the data mining engine. 

Our visualization tool will provide an intuitive interface that will facilitate a set of 

queries targeted at discovering similarities among a number of processed datasets. Given 

a number of processed datasets with voxels labeled according to a number of clusters (the 

voxels may also have associated signals), the basic queries we would like to provide are 

described below: 

Cluster-wise similarities: 

• Show all pairs of similar clusters in two or more datasets.  

• For any specific cluster in one of the datasets, show all similar clusters in all 

other datasets. 

Group-wise similarities: 

• Given a set of clusters in one dataset, consider the cluster formed by the 

UNION of these clusters (union cluster) and show all clusters in other datasets 

that are similar to the union cluster. 

• Given a set of clusters in one dataset, show all clusters in other datasets that 

are similar to ANY of the clusters in the selected set.  

• Given a set of clusters from one dataset, show all clusters in other datasets that 
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are similar to ALL the clusters in the selected subset (similar to every one of 

the selected clusters). 

We will now define what we mean by similar in the context of voxel clusters 

resulting from the analysis of an fMRI dataset. 

5.1 Cluster Similarity Measures 

There are a number of methods to compute the similarity between two clusters that were 

developed for the use of clustering algorithms, where one would like to merge two 

clusters if they are similar, or split a cluster if its components are not similar enough 

[20][21]. In our case, we want to assign a similarity score for every pair of clusters taken 

from different datasets. This is meaningful since all clusters in all the different datasets 

are ultimately mapped into the same space: the brain space. The various distance metrics 

used to quantify the similarity of two clusters are described below [32][2]: 

• Voxel overlap: because all the clusters in our application map to the same 

spatial domain (i.e. the brain) the number of voxels in the two clusters that 

overlap seems the obvious choice for measuring similarity. A numeric value 

for the similarity of two clusters a and b based on voxel overlap, can be 

obtained using the following formula (also known as the Jaccard coefficient): 

ba
ba

S
U

I
=  

In other words, the similarity score of a and b, is the ratio of the number of cluster 

components (voxels) located at the same position in the common space (common voxels), 
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to the total number of voxel in union of the two clusters. This coefficient ranges between 

0 and 1, 0 indicating total dissimilarity and 1 indicating that the two clusters are identical.  

Voxel overlap is a simple similarity measure that unfortunately does not work very 

well for small clusters in the presence of noise. It is well known that the normalization 

process that maps the experimental results into the standardized space is prone to a 

number of different sources of errors. As a result, the clusters (activation regions or 

simply clusters from a clustering algorithm) may be offset from their true position by a 

few voxels. While this is not a problem for big clusters with hundreds of voxels, it 

becomes a serious drawback when working with small clusters with just a few voxels, 

because the voxel overlap based similarity of two identical small clusters may even 

become 0 if one of them is offset by just a few voxels such that they have no common 

voxels anymore. Figure 8 shows such an example. 

 

 

Figure 8 Two small identical clusters that have no overlap at all as a result of 

registration errors. 

 
Small clusters are not at all uncommon among the results of fMRI analysis, given the 

poor spatial resolution of functional data and that some functional regions of the brain are 

actually quite small. The following similarity metrics provide the means to deal with this 
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problem: 

• Single linkage (nearest neighbor): the distance between two clusters is 

determined by the distance between the two closest voxels in the two clusters. 

• Complete linkage (furthest neighbor): the distance between two clusters is 

determined by the greatest distance between any two voxels in the two 

clusters.  

• Un-weighted pair-group average, where the distance between two clusters is 

the average distance between all pairs of voxels in the two clusters.  

• Weighted pair-group average is similar to un-weighted pair-group average 

method, but uses the size of each cluster as a weight in the computation.  

• Un-weighted pair-group centroid, where the distance between two clusters 

is defined as the distance between the centroids of the respective clusters.  

• Weighted pair-group centroid, which is similar to the un-weighted pair-

group centroid method above but weights each centroid by the size of the 

respective clusters. 

The distance between two points in two different clusters can be taken to be the 

simple Euclidean distance in 3-dimensional space, or any other metric in this space. 

However, for the problem at hand, the original raw time sequence may be available. In 

that case, each voxel has an associated BOLD signal (intensity value over the entire 

experiment), which could be used to compute similarity between clusters based on 

distance between two points in the signal space. Alternatively, other statistical cluster 

properties derived in signal space like mean, variance, etc could be used for the purpose 

of obtaining a similarity score.  
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Note that while computing the similarity score of two clusters, voxels are not being 

regrouped using these metrics (we do not re-cluster the data). 

The similarity scores between each pair of clusters, with the two clusters belonging to 

different datasets, will be presented to the user in an intuitive interface that can naturally 

support all types of queries described in this section and provides easy access to 

meaningful visualizations. For this purpose we have selected a familiar spreadsheet like 

interface that we will describe in the following section. 

Our tool is completely independent of the analysis method applied to the fMRI time 

series. However, there is one requirement that has to be met by the final results of the 

analysis in order to allow comparison between different experiments: the results have to 

be presented in the same standardized space i.e. they have to be normalized. The 

normalization process can either be conducted prior to the analysis or as a post-

processing step.  
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Chapter 6 

Implementation 

Our implementation of the visualization tool is centered on the concept of comparison 

between different analyzed datasets. As described in Chapter 5, we treat every analyzed 

dataset (result of some type of analysis on the raw fMRI data) as a labeling of voxels in 

the brain, using the term cluster to refer to groups of voxels with the same label. Our tool 

provides an intuitive user interface, organized in two independent panels: the data 

operations panel (Figure 9a) and the visualization panel (Figure 9b).  

(b) 

 (a) 

Figure 9 The user interface of our tool. (a) Data Operations Panel; (b) 

Visualization Panel. 
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The two components of the user interface have complementary roles. The data 

operations panel displays quantitative information about the datasets being compared and 

provides the means to formulate the types of queries described in Chapter 5. It also 

allows the user to quickly identify the clusters that present high mutual similarity and are 

worth investigating. On the other hand, the visualization panel provides a visual display 

of the selected clusters in a common space overlaid onto a rendering of the anatomy of 

the brain.  

We have chosen such a layout so that the user can focus on the visual aspect of the 

data being compared, shown in the visualization panel, or on the quantitative aspects of 

similarity presented in the data operations panel. This design provides the greatest 

flexibility, allowing one to completely ignore the quantitative similarity scores and focus 

solely on the appearance of similarity that results from the visualization, or the other way 

around. 

We will provide a more detailed description of the two components in the following 

sections. 

6.1 The Data Operations Panel 

The data operations panel, shown in detail in Figure 10 is the host for the quantitative 

aspects associated with the basic functionality of the application: the comparison between 

several datasets. This is why we will also refer to it as the comparison panel. It is divided 

into several sections: 

• Dataset properties area (DP) – provides controls for loading, removing and 
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setting the properties of the datasets involved in a comparison. 

• Similarity table (ST) – shows similarity scores both in numerical and 

graphical form (GV).  

• Operations area (OA) – provides tools for query formulation. 

DP 

ST 

GV 

OA 

 

Figure 10 Data operations panel 

 
The dataset properties area (DP) provides the means to load and remove datasets from 

the comparison table. It also provides quick access to the most commonly used properties 

of the datasets: color and opacity. Every dataset that is loaded into the comparison panel 

is assigned a color and an opacity that will be used by the rendering engine that manages 

the data visualization panel. Since two or more clusters can be shown in the visualization 

panel at the same time, different colors and opacities for clusters belonging to different 

datasets can facilitate a better understanding of their relationships. A dataset can be added 

to the comparison panel via the Add… button and removed via the corresponding Remove 
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button. 

The central part of the data operations panel is the similarity table, based on a 

spreadsheet format, which displays similarity scores between pairs of clusters. The rows 

and columns of the similarity table represent the different clusters in the loaded datasets 

and each individual cell shows the similarity score of the clusters corresponding to that 

cell’s row and column. In the simple case of two datasets A and B being compared, each 

cluster in dataset A is represented by a row in the spreadsheet and the columns represent 

the clusters in dataset B. In Figure 10 we show such a case where we compare two results 

of the k-means algorithm applied to the same dataset (“oddball” experiment subject 663) 

but with different parameters (the number of clusters: 7 and 10 respectively). The rows 

represent clusters in the 7-cluster result (dataset A) and the columns represent clusters in 

the 10-cluster result (dataset B). The color assigned to each dataset in the dataset 

properties area also colors the row/column headings. 

Formally, if we consider each dataset to be a set of clusters, then the similarity table 

can be thought of as a mapping from the cartesian product of the two datasets into a set of 

real similarity scores between 0 and 1 according to some similarity metric: 

[ ]1,0: →× BAs  

where s is the similarity function and A and B are two datasets having n and m clusters 

respectively: 

A = {a1, a2 … an}, B = {b1, b2 … bm}. 

An intuitive representation of this similarity function is in a table format, where the 

rows correspond to the clusters in dataset A and the columns represent the clusters in 
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dataset B. The cell at row i and column j in the table will show the value of s for the pair 

of clusters (a , b )i j . We will refer to a similarity function defined as above as a pair-wise 

similarity function. 

This formalism can be easily extended to accommodate any number of sets of clusters 

(datasets), so that s is defined on the Cartesian product of more than two sets. Given k 

sets of clusters (datasets) A , A , … A1 2 k, the similarity function s in this case is defined 

as: 

[ ]1,0...: 21 →××× kAAAs . 

Analogous to the two sets case, such a function could be represented in a k-

dimensional table but it becomes more difficult to visualize such a table in an efficient 

way as k increases. In the case of three sets one could imagine a three dimensional table 

containing a similarity score for each tuple of three clusters. 

Since it is difficult to visualize a higher dimensional table in an intuitive manner, we 

(linearly) map the higher dimensions to the columns of our two-dimensional spreadsheet. 

Therefore if 3 or more datasets A, B, C, D, … are to be compared, the first one (A) will 

reside on the rows of the table and the second one (B) on the columns as in the two-sets 

case; the third set (C) and all the subsequent ones (D, …) will also be mapped to the 

columns of the table after the columns occupied by B, as shown in Figure 11. There is 

only one dataset mapped to the rows of the similarity table and this is the first dataset that 

is loaded into the comparison panel. One limitation of this approach is that in fact we can 

only display similarity scores between the dataset mapped to the rows and all the other 
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datasets mapped on columns, without any possibility of showing similarities between two 

datasets loaded on the columns of the table. Formally, if we denote the dataset loaded 

into the rows of the table by R (with clusters R , R , … R1 2 m) and the k datasets loaded 

into the columns as C1 (with clusters C , C , … C1,1 1,2 1,n1), C2 (with clusters C , C , 

… C

2,1 2,2

2,n2), … Ck (with clusters C , C , … Ck,1 k,2 k,nk) then our similarity table is now a 

collection of pair-wise similarity functions s , s , … s1 2 k where each si gives the similarity 

between the clusters in R and the clusters in C ,i  as shown in Figure 11. 

[ ] kiCRs ii ,...1,1,0: =→×  

 
C1 C2 Ck 

C1,1 C1,2 … C1,n1 C2,1 C2,2 … C2,n2
… 

Ck,1 Ck,2 … Ck,nk
R1
R2
… R 

Rm

s1 s2 … sk

 

Figure 11 Similarity table showing k pair-wise similarity functions. 

 
The choice of mapping a single dataset to the rows of the table was based on the 

observation that our most common usage scenario for the tool involved comparing one 

analysis result against the result obtained using other methodologies or different 

parameters: a one-to-many comparison style. Additionally, the user can dynamically 

change which dataset is mapped to the rows, causing a complete update of the similarity 

table. An extension of our current approach could involve the possibility of mapping 

more than one dataset to the rows of the table, thus increasing the number of pair-wise 

similarity functions that can be hosted by it. For example, when comparing k+1 datasets, 
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if only one dataset is allowed to map to the rows, the table will display k pair-wise 

similarity functions as described above. However, if two datasets could be mapped on 

rows, the number will increase to 2*(k-1) since now we can display k-1 similarity 

functions for each row-mapped dataset, as shown in Figure 12. 

 
C1 C2 Ck-1 C1,1 C1,2 … C1,n1 C2,1 C2,2 … C2,n2

… Ck-1,1 Ck-1,2 … Ck-1,nk-1
R1,1
R1,2
… R1

R1,m1

s1,1 s1,2 … s1,k-1

R2,1
R2,2
… R2

R2,m2

s2,1 s2,2 … s2,k-1

 

Figure 12 Extension of similarity table by mapping two datasets onto rows. The 

table can now show 2*(k-1) pair-wise similarity functions. 

 
The number of columns in the similarity table can easily become quite large if the 

loaded datasets contain large numbers of clusters. It is not uncommon for a clustering 

algorithm working in n-dimensional signal space to return hundreds of clusters. 

Obviously such a large number of columns or rows cannot fit in one screen and locating 

large similarity values in the table can turn into a tedious task. We have provided a few 

tools to make this task easier. One of them is the table navigation widget (GV in Figure 

10), which displays a color-coded image of the similarity table in a reduced-size bitmap, 

right next to the similarity table. The similarity scores showed in the cells of the 

similarity table are transformed into colored pixels on this icon, with high values 

mapping to intense red and small values mapping to light red. This bitmap provides a 
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global graphical view of the similarity scores present in the table and it also allows the 

user to navigate to a specific part of the table by simply clicking on the bitmap. A 

rectangle drawn on the bitmap indicates the part of the table that is currently visible in the 

spreadsheet.  

The similarity scores displayed in the table can be computed using any of the cluster 

similarity metrics discussed in Chapter 5. The metric of choice can be selected from the 

right section of the data operations panel, right under the similarity table. 

The third region of the data operations panel is the operations area, which provides 

the query tools (Figure 10). The queries described in Chapter 5 can be easily answered 

using the few controls here and selections of rows/columns in the similarity table. We 

will review the types of queries we want to support and then show how they can be 

formulated using our interface. We would like to be able to answer the following type of 

queries: 

• Cluster-wise similarities: 

o Q1: Show all pairs of similar clusters in two or more datasets.  

o Q2: For any specific cluster in one of the datasets, show all similar 

clusters in all other datasets. 

• Group-wise similarities 

o Q3: Given a set of clusters in one dataset, show all clusters in other 

datasets that are similar to ANY of the clusters in the selected set.  

o Q4: Given a set of clusters from one dataset, show all clusters in other 

datasets that are similar to ALL the clusters in the selected subset 

(similar to every one of the selected clusters). 
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o Q5: Given a set of clusters in one dataset, consider the cluster formed 

by the UNION of these clusters (union cluster) and show all clusters in 

other datasets that are similar to the union cluster. 

The Show all similar button displays all similar pairs of clusters with one cluster from 

the rows and the other from the columns (Q1). The user can specify the minimum 

acceptable similarity score in the Above box. Rows and columns of the table that do not 

contain at least one significant similarity score will collapse to make room for the 

“interesting” ones (Figure 13). This is again useful when dealing with a large number of 

rows and/or columns. 

 

 

Figure 13 The Show all similar button displays only clusters that meet the 

similarity criteria. 
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A Q2 type query can be formulated by simply selecting one of the row clusters and 

then pressing the Show all similar button. This will show only the column clusters that 

are significantly similar to the selected row. The user can select more than one row 

cluster, choose how the selection should be interpreted and then press the same Show all 

similar button to display column clusters similar to the selection. A multiple row 

selection can be interpreted in one of three ways: ANY, ALL and UNION, corresponding 

to the last three queries Q3, Q4 and Q5. For a column cluster to be considered similar to 

the selection, it must be significantly similar to: 

• at least one of the selected row clusters (the ANY option) 

• every one of the selected clusters (the ALL option), or 

• the union of the selected clusters (the UNION option) 

Another helpful tool in a spreadsheet is sorting (the Sort by selected row/column 

button). The user can sort the similarity table by any row or column, making it easier to 

locate similar clusters when the number of clusters is large.  

6.1.1 Loading a dataset 

When loading a new dataset into a comparison table, the user is presented with a number 

of options. Our tool allows one to directly load a un-thresholded statistical map produced 

by analysis tools like SPM. These datasets contain a floating point value at each voxel in 

the dataset, both inside and outside the brain. The user is allowed to choose a threshold 

while interactively viewing the supra-threshold voxels (Figure 14). This functionality is 

desirable especially because the choice of a suitable threshold is not a simple matter and 

is usually done in a blind fashion at run time in the analysis tool. While a high enough 
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threshold guarantees a high confidence that the selected voxels are really active, it also 

selects only a few usually spatially disconnected voxels. On the other hand, a lower 

threshold will include more voxels, maybe more spatially coherent but there is a bigger 

chance that some of them are not really active. We believe this choice should be left to 

the user, as conditions vary from experiment to experiment.  

 

 

Figure 14 Loading a dataset. 

 
Apart from the global thresholding described above, one can also use a local 

threshold to increase the size of the individual spatial clusters (Figure 14). This local 

threshold is effective in the vicinity of the voxels selected by the global threshold and 

allows voxels that are under the global threshold but within a certain percentage of the 

value of the local maximum to be included in the cluster. The effect of this local 

threshold is to increase the number of voxels in each spatial cluster. 

After thresholding the voxels, the user can choose a clustering method for the supra-

threshold voxels. The choices are (Figure 14): 

• One cluster – all selected voxels will form a single functional cluster. 
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• One cluster per connected component – each connected set of voxels will be 

treated as a separate cluster (26-connectivity is used). 

• One cluster per int value – the actual value of the voxel in the dataset 

determines which cluster it belongs to. Each different value will be treated as 

a different cluster. (Note that when loading a probability map containing 

floating point values, the application will convert them to integers by 

truncating all the non-zero values and adding one). 

6.2 The Visualization Panel 

The visualization panel graphically displays the selections made in the similarity table, 

overlaid on a volume-rendered image of the brain anatomy. This image provides visual 

information about the location of different clusters in the brain space. The three buttons 

on the panel are shortcuts to axis-aligned visualizations of the data: Axial views the data 

from above the head, Sagittal views the data from the left side of the head and Coronal 

shows the data as viewed from the front of the head. 

The graphical display in the visualization panel is linked to the similarity table. As the 

user browses through the similarity table, the two clusters corresponding to the rows and 

columns of the current selection of spreadsheet cells are rendered together with the 

anatomical image in the same space. Each cluster is rendered using the color and opacity 

selected for its dataset in the dataset properties region of the data operations panel.  
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Figure 15 The visualization Panel. 

 
When looking for similarity between two clusters, their geometric intersection 

(common voxels) can provide valuable information (as in the Venn diagram) and it is 

rendered in a different color. In Figure 9(b) (enlarged in Figure 15) the visualization 

panel shows cluster 7 from dataset A in blue, cluster 7 from dataset B in red and their 

common voxels (intersection) in light green. 

A few controls in the middle part of the data operations section of the data operations 

panel, labeled Display control the rendering of the selected clusters. As a set of clusters is 

selected by selecting a cell in the spreadsheet, the voxels in the selected clusters form 

three distinct classes:  

• voxels that belong only to the row cluster (row \ column),  

• voxels that belong only to the column cluster (column \ row) and  

• voxels that belong to both the row and the column cluster (intersection).  
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The user can choose to display one, two or all of these classes by checking the 

corresponding options. For example, by checking the rows \ columns option, and un-

checking the other two, the visualization panel will show those voxels that belong to the 

row cluster and do not also belong to the column cluster. This is equivalent to a set 

difference operation on the two sets of voxels (Figure 16). 

 

(a) (b) (c) (d)  

Figure 16  Set operations on two clusters. Showing all voxels in both clusters 

(a), voxels belonging only to the row cluster (b), voxels belonging 

only to the column cluster (c) or only the common voxels (d). 

 
The tool is implemented in C++ with most of the development process done under 

MS Windows. However, for the user interface we used the wxWidgets library [41] and 

the Visualization Toolkit (VTK) [40], cross-platform libraries that can be compiled on 

other platforms like Linux and Mac without any changes in the code. 

Over fifteen classes were developed during the implementation. Figure 17 illustrates 

the collaboration between the most important components of the system. 
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Application Logic User Interface 

 

Legend: 
 

: uses.

clusterComp 
stores all loaded 
datasets and performs 
comparisons between 
any pair of datasets. 

ccAnatomy 
anatomical dataset 
used to overlay the 
data clusters. 

ccApp 
coordinates all 
other classes. 

FileOpener 
file open wizard. 

dataOps 
data conversion, 
thresholding, 
clustering. 

Renderer 
rendering control. 

UICompTable 
controls the data 
operations panel, 
including the 
comparison table, 
graphical table view, 
other controls 

UIRenderer 
controls the 
visualization panel. 

Figure 17 Collaboration diagram for the most important components of our 

implementation. 

 
The ccApp class coordinates the activity of all other classes, representing the high-

level logic of the interactive application. At application startup, it constructs instances of 

UICompTable and UIRenderer and introduces them to each other so that further 

interaction is done directly, without the mediation of ccApp. UICompTable encapsulates 

the functionality in the data operations panel, including the spread-sheet based 

comparison table, the table navigation widget and the rest of the user interface controls in 

the panel. The UIRenderer component implements the visualization panel. It included an 

instance of Renderer which is the actual rendering control and several push buttons. The 

FileOpener component is a wizard-like interface for loading a dataset into our tool, 

accessed through the data operations panel. The interface allows file selection, various 

threshold setting and clustering type selection. Data conversion from various types to the 

internal representation, thresholding and clustering are done via the dataOps component. 
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ccAnatomy is a special component that manages the underlying anatomical image on top 

of which the data clusters are shown. The heart of the application is the clusterComp 

class which manages all datasets loaded at a given time and performs comparisons 

between any pair of datasets; the result of each comparison is a similarity table. 

We tried to maintain a separation between user interface components and application 

logic as seen in Figure 17. This separation allowed us to create a non-interactive 

command-line version of the tool that can be used in batch processing of a large number 

of datasets. This command-line version was developed under Linux. 
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Chapter 7 

Examples and Discussion 

We demonstrate our tool by describing a number of usage scenarios and examples. Voxel 

overlap was used as similarity metric in all of the following examples. First, we will 

review the types of scenarios where our tool may be useful: 

• For clinicians 

o Identifying similarities and differences between different analysis 

methods. 

o Explore similarities and/or differences between different subjects 

performing the same experiment. 

o Identify similarities and/or differences between brain regions activated 

in different experiments. 

o Assessing patient progress during recovery by examining successive 

scans acquired during the recovery process. 

• For algorithm developers 

o Establishing similarities and differences between their methodology 

and well-established methods. 

• For users of fMRI database search engine  
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o Perform the actual data retrieval based on one of the available 

similarity measures. 

o Inspect the degree of similarity between the retrieved datasets the 

query dataset. 

Our database of fMRI datasets consists of 4 “oddball” experiments, over 20 “event 

perception” experiments [45] and 9 “recall” experiments [29][30]. Every experiment 

includes several conditions and runs, so the number of datasets exceeds 500. In the 

“oddball” experiment, the subject is presented with a sequence of images and is asked to 

react by pressing a button when an “oddball” image is displayed. The “oddball” image 

was the image of a face while the “non-oddball” images may be geometrical figures. In 

the “event perception” experiment, the subject is watching a short video sequence and is 

asked to press a button when he/she sees an event happening. The definition of an event 

is left to the subject. Two video sequences were used for this experiment: one is a movie 

of a student preparing for study in a library, also known as the “study” video; the other is 

a cartoon of a small circle moving around a set of obstacles that represent the layout of a 

room in a house, also known as the “house” video. In the “recall” experiment, the 

subjects studied a set of famous faces, locations or objects (the study condition). Later the 

subject was asked to verbally recall the studied items (the “recall” condition). 

Several analysis methods were used SPM and FSL from the hypothesis-driven 

category and three clustering methods from the data-driven category: k-means, mean shift 

and canonical sets. 

The results of the hypothesis-driven methods were converted to a cluster format by 

thresholding the resulting statistical map and spatially clustering the resulting voxels.  
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From the usage scenarios described at the beginning of the chapter, we identify 

several types of comparisons that would be useful: 

• Comparing the results of different analysis methods applied to the same data – 

cross-method comparison. 

• Comparing results of one analysis methodology applied to different data – 

cross-subject comparison. 

• Mapping activation regions to a standardized brain atlas. 

• Comparing two unrelated datasets to explore the similarities and differences 

between their activated regions. 

In the remaining of this chapter we will present examples for each type of comparison 

and highlight the kind of insight one could get from such a comparison. 

7.1 Comparing results different analysis methods on 

the same data 

This particular kind of comparison might be used by scientists in order to analyze the 

results of different analysis methods and make inferences about the similarity or 

differences in the results. Alternatively, algorithm developers might be interested in this 

type of comparison in order to compare their results with those obtained using one of the 

standard packages. While it is natural to see differences in the results obtained with 

different algorithms, one would expect a certain degree of similarity since all the methods 

try to extract the same “underlying truth” from the same data. 
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We exemplify this approach by comparing the results of four methods applied to the 

same data: the “oddball” task, performed by subject 663. All the result datasets are loaded 

into a single comparison table. The first loaded dataset defines the rows of the 

spreadsheet; all others map to columns. The fastest way to identify similar clusters is to 

set the similarity threshold (the Above box in the Operations panel) to the desired 

minimum acceptable similarity, and then press the Show all similar button. Figure 18 

illustrates this case. The geometric intersection of the two clusters corresponding to the 

selected spreadsheet cell is rendered in light green in the rendering window. The 

similarity table shows clusters in the row dataset (results of the canonical sets algorithm) 

that overlap with clusters obtained using other algorithms (k-means (B), mean-shift (C) 

and SPM (D)). 

 

 

Figure 18  Comparing the results of four different analysis methods applied to 

the same data. 

 
One of the common problems in using all these analysis tools is choosing the right 

parameters. The ideal results should show reasonably large clusters in the expected areas 
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of activation. However, choosing the right parameters is not a trivial task, especially 

when the inner mechanisms of the analysis algorithm are not well understood by the user. 

In such cases, one could simply make a few choices for the necessary parameters, run the 

analysis tool and then compare the results. In the following example we applied the k-

means clustering algorithm to “oddball” subject 663. Clustering was done in signal space. 

We have a choice for the number of clusters we want to obtain. On one hand we want to 

work with as few clusters as possible in order to be able to quickly analyze each one of 

them. On the other hand, too few clusters may force the algorithm to merge groups of 

voxels that are different, creating less interesting clusters. In Figure 19 we show a 

comparison of the results obtained using 7 (the A set) and 10 (the B set) as the parameter 

value (number of clusters). We want to identify clusters located inside the brain which 

are also spatially coherent.  

Figure 19 Comparing the results of applying k-means clustering with different 

parameters on the same dataset. 
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For this particular example, we can see that cluster B10 is completely included in A7 

since in the visualization panel we can only see two colors: blue corresponding to voxels 

that are part of A7 only and green which are voxels that are included in both A7 and B10 

(red would indicate voxels in B10 which are not in A7). This suggests that cluster B10 

was obtained by breaking cluster A7 into several smaller pieces. The exact number of 

pieces that A7 was broken into can also be seen quickly by inspecting the row 

corresponding to A7 where we see only 3 non-zero values. Thus, when changing the 

parameter value from 7 to 10, the 7th cluster was broken into 3 pieces that were assigned 

to different clusters in the 10 clusters result. 

7.2 Comparing results of same analysis method on 

different subjects (cross-subject comparison) 

In the same way we could compare the results of the same analysis method applied to 

different subjects of the same experiment. Pairs of clusters with high similarity score will 

represent common activation regions across subjects. 

 
 

In Figure 20 we show a comparison between results of the same analysis 

methodology (using FSL) applied to several subjects in the “event perception” 

experiment. We filtered the similarity table to show only similarity scores above 4% and 

we can immediately see that activation cluster A8 from subject 16 is similar to one 

cluster from each of the other subjects (B2 from subject 17, C40 from subject 19 and D28 

from subject 20), indicating a common activation area present in all subjects. Cluster A8 

from subject 16 and its intersection with cluster D28 from subject 20 are shown in the 
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visualization panel in Figure 20. 

 

 

Figure 20 Comparing the results of one analysis methodology (FLS) applied to 

several different subjects of the same “event perception” experiment. 

Cluster A8 and its intersection with D28 are shown in the 

visualization panel. 

7.3 Mapping analysis results to a brain atlas 

In a different scenario, we want to map the results of some analysis method (k-means 

clustering for example) to the well-known (to brain scientists) Brodmann regions or some 

other standard brain atlas. Brodmann regions represent a classification of brain voxels 

based on anatomical tissue properties, and each region is believed to be responsible for a 

number of functions. The Brodmann map can be regarded as another clustering of the 

brain-space voxels and it is treated in the same way as any other clustering. This task is 

commonly performed after the analysis step, to map the active voxels to the Brodmann 

areas. 

 
 

Brain-specific questions can also be posed about a specific labeling such as the 
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foll

erlap with any Brodmann region. 

at overlap with it. 

 

 

 

Figure 21 Brodmann region mapping. Brodmann areas shown on the rows in 

blue and the clusters of subject 4 of the “recall” experiment are 

 
In Figure 21 we show a m lts of FSL analysis applied to “recall” 

sub

owing: 

• Select all clusters that ov

• Given an interesting Brodmann region, select all clusters th

• Given a few Brodmann regions that the researcher considers relevant for the

given experiment, select all clusters that overlap with any or all of them. 

shown in red on the columns. 

apping of the resu

ject 4 (“study face” condition, run number 3) to the Brodmann regions. We load the 

47 Brodmann clusters on the rows of the comparison table (in blue); FSL results are 

mapped to the columns. The similarity table shows how each activation cluster of subject 

4 overlaps with every one of the Brodmann regions. Based on the similarity table, we can 
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say that the subject shows activation in Brodmann regions 9, 10, 11, 20, 21, 23 and 39. 

 
 

7.4 Query-by-example Data Retrieval 

One of the valuable usage scenarios of our tool is in a data retrieval environment. Here 

the user of an fMRI database would like to retrieve datasets which present similarities 

with a given query dataset, presented by the user: a query-by-example approach to fMRI 

database searching. Suppose we have acquired a new dataset (“recall” subject 7, study 

face condition for example). We analyze this dataset using any method at hand and then 

we would like to find a similar dataset by querying a repository of analyzed fMRI data. 

We will use overlap as our similarity requirement. Figure 22 shows a comparison 

between our query dataset (set A) and eight datasets from our fMRI database. These are: 

three “study face” conditions: two for the same subject as our query dataset (subject 7), 

but different runs: run 2 (set D) and run 3 (set I), while the third one is for subject 4 (set 

F); one “study object” condition (set B); two “study location” conditions (sets C and G); 

one “event perception” experiment (set E) and one “oddball” experiment (set H). All 

datasets were analyzed using FSL. The “study face”, “study location” and “study object” 

conditions are from the same experiment: “recall”. “oddball” and “event perception” are 

different experiments. The similarity table displays pairs of clusters with a similarity 

score above 6%.  
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Figure 22 Query-by-example data retrieval. 

 
The collapsed similarity table shows that our query dataset is more similar to the 

other study face conditions (sets D, F and I). The visualization panel shows one of the 

common regions activated in sets A and D (same subject: 7, same condition: study face, 

different runs). Also, note that the similarity scores between rows and the columns 

labeled F (F1 and F4) are lower than those corresponding to the other columns that were 

not collapsed. Set F corresponds to the same condition, study face, but performed by a 

different subject (subject 4). Thus, in this example, we can distinguish between datasets 

corresponding to different conditions, and among those, we can differentiate between 

different subjects, all based on the scores presented in the similarity table. 

The example showed in Figure 22 and discussed above uses a very small number of 

datasets. This is because the interactive version of our tool requires the user to manually 

load each of the datasets involved in the comparison. When large databases need to be 
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searched for similar datasets, a scripting capability would be desirable.  

7.5 Investigating similarity reported by other methods – 

visualization of data mining results 

In addition to its use as a retrieval tool, our application provides valuable insight into the 

data retrieved using other systems. Let us assume that a database of fMRI studies has its 

own query-by-example search engine. When the user presents a query dataset, the system 

will identify a number of similar datasets based on some internal similarity concept. More 

generally, assume the database is equipped with a data mining engine which can identify 

similarities in the catalogued datasets and report them to the user. Again, the similarity 

concept is a built-in internal function of the data mining algorithm and the user may have 

little or no control over specific parameters. However, the end user may wish to 

subjectively assess the degree of similarity between the reported datasets, focusing on the 

aspects he/she believes to be relevant for the given case. In this usage scenario, our tool 

performs a function similar to that of a web browser that allows the user to click and 

investigate each of the results of a web query and asses their relevance. 

Our similarity computation experiments included a similarity measure based on 

overlap with Brodmann areas discussed previously. Every analysis result was converted 

into a Brodmann vector, a vector with b components, where b is the number of 

Brodmann regions. Each vector component represents the percent of the corresponding 

Brodmann area covered by the given dataset. The similarity measure between two 
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datasets was computed as the cosine of the angle between the two corresponding 

Brodmann vectors. One of the high-ranking pairs among the datasets in the “recall” 

experiment was subject 4, study location condition (run 3) and subject 8, study location 

condition (run3). The Brodmann vector similarity score for this pair was 0.89, where 1.00 

indicates perfect similarity. Let us assume this is the result of a data mining operation on 

a database of fMRI data. To further investigate this pair, using overlap between the two 

datasets as our similarity criterion, we loaded the two datasets into our interactive 

comparison tool. The similarity table in Figure 23 shows all cluster pairs with overlap 

similarity score above 1%.  

 

 

Figure 23 Investigating high similarity reported by other methods. 

 
Dataset A has 25 connected clusters, while dataset B consists of 46 connected 

clusters. A quick inspection of the similarity table presented in Figure 23 reveals that a 
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large number of clusters from the first dataset (A1, A2, A5 to A11, A13, A14, A16 to 

A18 and A20 to A25) do not overlap with any of the clusters in the second dataset. We 

can see that only 11 pairs of clusters out of the total of 1150 (25 x 46) show any 

similarity at all; this constitutes less than 1% of the total number of pairs. In fact, the total 

overlap similarity of the two datasets is only 17% (this score was obtained by loading 

each of the two datasets as a single functional cluster – not shown). This demonstrates 

that the high Brodmann vector similarity score is only partially due to actual voxel 

overlap between the two datasets. The rest could be accounted for by the different 

clusters that do not overlap with each other but are in the same Brodmann areas. If 

overlap was the required similarity, then we would reject this first result of the data 

mining operation. 

The above example illustrates the case where overlap similarity between two datasets 

is low while another similarity measure could produce a high score. The opposite case 

(high overlap similarity and small “other similarity” score) is less likely simply because a 

high overlap similarity implies that the two datasets are virtually identical not only with 

respect to shape but also with respect to position and orientation. Thus any reasonable 

similarity metric would recognize them as similar and assign a high score to the pair.  
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Chapter 8 

Conclusions and Future Work 

The tool presented here can provide useful information to the brain studies research 

community in several ways:  

• It enables one to visually compare the results and assess the similarity of 

different analysis methods that are available and, hopefully, identify the best 

method to use for the study at hand.  

• It allows developers to compare the results of their new analysis algorithm 

with other standard analysis techniques already available. 

• It can serve as a query-by-example data retrieval tool on a small database. 

• As the visualization interface of a database engine, the tool can be used to 

browse through the results of a data-mining operation or a query-by-example 

search and decide whether the required similarity is present in the retrieved 

datasets; much as a browser serves this purpose in the case of a web search.  

• It can provide valuable insight into the data being examined in an intuitive and 

graphical manner as well as quantitative measurements of similarity. 
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8.1 Observation of Real Users 

The current interface was designed to help us understand the type of queries that are 

applicable to this specific problem. As part of the development of this tool, we have 

begun to investigate the usability of the prototype by asking several experienced 

researchers in the fMRI field to work with the tool. The investigation included a short 

introduction to the tool and its basic interface features and a guided test, where the 

researchers were asked to perform some basic tasks like comparing several datasets and 

mapping them to Brodmann areas. 

Several conclusions were drawn from this case study. One conclusion was that setting 

the threshold as an absolute value of the t statistic when loading a t-map is not 

meaningful, and the expert users would like to be able to set the threshold based on 

probability (the p-value which can be derived from the t distribution). Regarding the 

comparison paradigm, the current version of the tool only allows one-to-many 

comparisons (one dataset is compared to several other datasets). The user evaluation 

revealed that many-to-many comparisons would be desirable in cases where more than 

two datasets need to be compared.  

To summarize: 

• We have built a new real-time visualization tool for comparing analyzed fMRI 

datasets which can provide valuable insight into the studied data or analysis 

methodology. 

• We have provided two linked views of the similarity between two datasets: a 

quantitative view based on a spreadsheet paradigm and a qualitative view 
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provided by the visualization component. 

• We have demonstrated how the tool can be used for various tasks such as: 

comparing the results of different methodologies, comparing activations of 

different subjects, mapping activation regions to brain atlases, query-by-

example data retrieval and exploration of data mining results. 

8.2 Future Work 

Future developments will include the recommendations resulting from the user study: 

setting thresholds based on probability rather than absolute t values and implementing the 

many-to-many comparison. 

When a large number of datasets needs to be compared, the time required for the user 

to load all the datasets could be prohibitive. In such cases, adding scripting capabilities to 

the application could prove very useful.  

In this design, we only implemented one of the similarity computations (voxel 

overlap). We plan to finish implementing the other metrics described here and possibly 

implement new ones, such as a metric based on the earth-movers distance. In addition, 

we will investigate the appropriate visualization methodologies for these new similarity 

metrics. 
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1. Starting CCVT 

To start the program, double click on CCVT icon.   Three main windows will pop 

up (Figure 1): 

• The Comparison Panel displays quantitative information about the datasets 

being compared 

• The Visualization Panel provides a visual display of the selected clusters in a 

common space overlaid onto a rendering of the anatomy of the brain. 

• Loading Dataset window to load some datasets into CCVT. 

 

Figure 1. CCVT user interface (comparison panel, visualization panel, loading dataset). 
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2. Loading a dataset 

In the Load Dataset window (Figure 2), click on ‘…’ to open a browsing window (Figure 

3). You can always access the Load Dataset window from the Comparison Panel by 

clicking on the ‘Add…’ button.  

You must load at least two datasets to be able to do a comparison. The only supported 

file format is the ANALYZE format (a pair of .hdr and .img files). 

 

Cancel to return to 
comparison panel  

Click to browse and select 
your dataset file 

Figure 2. Load dataset (step 1). 

Several sample datasets are installed with the tool in the ‘Example Data’ directory 

under the installation directory (default: C:\Program Files\Rutgers University\Cluster 

Comparison and Visualization Tool). In the browse window, click on the file you want to 

load and then click on the ‘Open’ button (Figure 3) to go to the next step.  
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Click to cancel and return 
to the previous window 

Click to open the 
selected dataset 

Figure 3. 

Figure 4. 

Choose a file to load. 

Click on the ‘Next’ button (Figure 4) to go to the next step. 

 

Go to next step.

Load selected dataset. 

The tool will allow you to directly load a t- or f- map produced by analysis tools such 

as SPM, AFNI, or FSL. Any type of statistical map can be loaded. The maps can have 

any dimensions but they must be normalized. 
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Minimum and maximum 
threshold values 

Change the global 
minimum and maximum 
thresholds 

Add this data the 
comparison panel 

Cancel and return to 
comparison panel 

Similar to visualization 
panel. Displays the 
thresholded dataset

Go back to open a 
different dataset  

Figure 5. Loading Dataset (step 2). 

When loading a statistical map, the dataset contains a floating point value at each 

voxel, both inside and outside the brain. You are allowed to choose a threshold while 

interactively viewing the supra-threshold voxels (Figure 5). This functionality is desirable 

especially because the choice of a suitable threshold is not a simple matter and is usually 

done in a blind fashion at run time in the analysis tool.  

You can also load other types of datasets besides statistical maps, such as cluster 

masks, where each voxel contains an integer value specifying the cluster it belongs to. 

Changing the threshold values is not meaningful for this type of already clustered 

datasets. 
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2.1 Changing the global threshold 

Use global threshold sliders (Figure 5) to increase or decrease the global threshold level. 

While a big enough threshold guarantees a high probability that the selected voxels are 

really active, it also selects only a few usually spatially disconnected voxels. On the other 

hand, a smaller threshold will include more voxels, maybe more spatially coherent but 

there is a bigger chance that some of them are not really active. CCVT gives you this 

choice, as conditions vary from experiment to experiment. 

 

Click to update the 
image after any threshold 
change 

Figure 6. Modified Min Threshold. 

The Min/Max sliders specify a range of threshold values. The dataset is thresholded 

so that all values below the Min threshold and above the Max threshold are set to zero. 

While moving the sliders to change the threshold values, in the textboxes next to each 

slider, the application displays the current threshold both as an absolute value and as a 

percentage of the maximum value in the dataset. For positive correlations, one generally 

needs to set the max threshold at the highest value and change the ‘Min’ slider (Figure 6). 
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For the negative correlations, the ‘Min’ slider should be set at the minimum value and the 

‘Max’ slider should be varied (Figure 7). 

 

Figure 7. Modified Max Threshold. 

2.2 Changing the local threshold 

Use a local threshold (Figure 8) to increase the size of the individual spatial clusters. This 

local threshold is effective in the vicinity of local maxima that obey the global thresholds 

and allows voxels that are outside the global threshold but within a certain percentage of 

the value of the local maximum to be included in the cluster. The effect of this local 

threshold is to increase the number of voxels in each spatial cluster. 

To visualize the effect of any threshold change, one must click on the ‘Render’ 

button. The visualization part in this window is similar to what will be displayed in the 

Visualization Panel (Figure 13). To rotate and see the effect of changing thresholds on 

the image click and drag on the image using the left mouse button. 
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Move the slider to 
change the local 
threshold

Check to use the 
local threshold

 

Figure 8. Setting the Local Threshold. 

2.3 Select Cluster-type 

This choice (Figure 9) allows one to treat the supra-threshold voxels as a single cluster (a 

functional cluster) or as multiple clusters. It is used for visualization purposes. Different 

choices are as follows: 

• Choose ‘single cluster’ to have all supra-threshold voxels as a single 

functional cluster. By selecting this choice, there will be only one column or 

row in the comparison table for this dataset. 

• Choose ‘One cluster per int value’ so that the actual value of the voxel in the 

dataset determines the cluster it belongs to. Each different value will be 

treated as a different cluster. When using this option with datasets containing 

floating point values, the application will truncate the non-zero absolute 
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values to an integer and add one. This option is meant to be used with data 

that is already clustered (cluster masks) by the analysis tool. 

• Choose ‘One cluster per connected component’ to have each connected set of 

voxels treated as a separate cluster (26-connectivity is used). This option will 

actually cluster the data. 

Click to go to the 
comparison panel 

Each connected set of 
voxels will be treated as a 
separate cluster. 

All selected voxels will form a single 
functional cluster 

The actual value of the voxel in 
the dataset determines the cluster 
it belongs to. Each different value 
will be treated as a different 
cluster.

 

Figure 9. Change the cluster type. 

Click on the ‘Finish’ button. This will bring up the Comparison Panel (Figure 10). 

Please note that at least two datasets need to be loaded; the first is put on y axis (the rows 

of the comparison table) and the second on the x axis (the columns of the comparison 

table). 
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3. Data Comparison Panel  

The data comparison panel displays quantitative information about the datasets being 

compared. It also allows the user to quickly identify the clusters that present high mutual 

similarity and are worth investigating.  

3.1 Dataset properties 

Use the upper part of the comparison panel (Figure 10) to add or remove a dataset, or 

change its color and opacity. 

 Every dataset that is loaded into the comparison panel is assigned a color and an 

opacity that will be used by the rendering engine that manages the data visualization 

panel. Since two or more clusters can be shown in the visualization panel at the same 

time, different colors and opacities for clusters belonging to different datasets can 

facilitate a better understanding of their relationships. Opacity lets the user adjust the 

transparency of all the clusters in a dataset.  

A dataset can be added to the comparison panel via the ‘Add…’ button and removed 

via the corresponding ‘Remove’ button (Figure 10).  
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Load a new 
dataset 

Remove the 
dataset Change the 

opacity 

      Dataset 
properties area Dataset names 

Change the color 

Figure 10. Dataset properties area in the comparison panel. 

3.2 The Similarity Table 

The central part of the data Comparison Panel is the similarity table (Figure 11), based on 

a spreadsheet format, which displays similarity scores between pairs of clusters. The 

similarity scores are computed by the chosen similarity metric. The rows and columns of 

the similarity table represent the different clusters in the loaded datasets and each 

individual cell shows the similarity score of the clusters corresponding that cell’s row and 

column. 
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Show voxels that belong only 
to the row cluster 

Show voxels that belong 
only to the column cluster 

Similarity metric 

Show voxels that belong to 
both the row and the column 
l

Columns: Different 
clusters in the 
loaded dataset B 

Similarity table; each cell 
shows the similarity score 
between the clusters in the 
cell’s row and column 

Rows: Different clusters 
in the loaded dataset A 

Table navigation widget; 
color-coded image of the 
similarity table 

 

Figure 11. Similarity table. 

3.3 Operations area 

Because the table can be very large and unwieldy there are a number of “operations” that 

can be performed to enable the user to focus on the ‘important’ parts of the table. These 

are: 
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• Table navigation widget; displays a condensed view of table allowing the user 

to concentrate on areas of similarities. One can slide the black window (Figure 

11) in the navigation widget to see the corresponding cells in the comparison 

table, either before collapsing the table or after that. 

• Display; (Figure 11) this area controls the visualization. You can select any 

cell in the comparison table by clicking on it. Then if you select the 

‘rows\columns’ box, the cluster from the row dataset corresponding to the 

current cell will be shown on the Visualization Panel with the color assigned 

to that dataset. If you select the ‘columns\rows’ box, then the cluster from the 

column dataset corresponding to the selected cell will be shown on the 

Visualization Panel with the color assigned to that dataset. If you need only to 

look at the intersection of the two clusters corresponding to the current cell, 

then you have to click on the ‘intersection’ box. 

• Operations; displays all similar pairs of clusters with one cluster from the 

rows and the other from the columns. You can specify the minimum 

acceptable similarity score in the ‘Above’ box. Rows and columns of the table 

that do not contain at least one significant similarity score will collapse to 

make room for the “interesting” ones. After determining your minimum 

acceptable similarity score, click on ‘Show all similar’ button (Figure 12) to 

view the collapsed table. This is again useful when dealing with a large 

number of rows and/or columns. Click on ‘Reset’ button to return to the 

detailed comparison table (Figure 12). 
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Returns to the  full 
comparison table view

Rows and columns of the table that do not 
contain at least one significant similarity 
score will collapse

Minimum acceptable 
similarity score 

Figure 12. Operations area in the comparison panel. 

4. The Visualization Panel 

Once a dataset is loaded, the Visualization Panel becomes active. The visualization panel 

provides a visual display of the selected clusters in a common space overlaid onto a 

rendering of the brain anatomy. CCVT has such a layout so that the user can either focus 
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on the visual aspect of the data being compared, shown in the visualization panel or on 

the qualitative aspect displayed in the similarity table. This design provides the greatest 

flexibility, allowing one to completely ignore the quantitative similarity scores and focus 

only on the appearance of similarity which results from the visualization. This image 

provides visual information about the location of different clusters in the brain space. The 

graphical display in the visualization panel is linked to the similarity table in the 

comparison panel. As you browse through the similarity table, the two clusters 

corresponding to the rows and columns of the current selection in the spreadsheet are 

rendered together with the anatomical image in the same space. Each cluster is rendered 

using the color and opacity selected for its dataset in the dataset properties region of the 

comparison panel. 

The visualization Panel maps the clusters into ‘brain’ space. The standard template 

brain (MNI template) is shown. The view can be rotated by clicking and dragging the left 

mouse button, zoomed by clicking and dragging the right mouse button or panned using 

the middle mouse button. There are Four standard views accessible from the push buttons 

at the bottom of the visualization panel: Axial (from above the head), Sagittal (from the 

left side of the head), and Coronal (from the front of the head). 
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Axial view of the 
image (default) 

Shows clusters 
corresponding to selected 
spreadsheet cell with colors 
assigned to their datasets. 
The common area of the 
clusters is shown with a 
different color (light green). 

Figure 13. 

Figure 14. 

The Visualization Panel (axial view). 

 

Sagittal view of 
the image 

Visualization Panel (sagittal view). 
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Coronal view of 
the image

 

Figure 15. Visualization Panel (coronal view) 
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