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Abstract

In this paper, we introduce the concept of spatial transfer functions as a unified approach to volume modeling
and animation. A spatial transfer function is a function that defines the geometrical transformation of a scalar
field in space, and is a generalization and abstraction of a variety of deformation methods. It facilitates a field-
based representation, and can thus be embedded into a volumetric scene graph under the algebraic framework
of constructive volume geometry. We show that when spatial transfer functions are treated as spatial objects,
constructive operations and conventional transfer functions can be applied to such spatial objects. We demonstrate
spatial transfer functions in action with the aid of a collection of examples in volume visualization, sweeping,
deformation and animation. In association with these examples, we describe methods for modeling and realizing
spatial transfer functions, including simple procedural functions, operational decomposition of complex functions,
large scale domain decomposition and temporal spatial transfer functions. We also discuss the implementation of
spatial transfer functions in the vlib API and our efforts in deploying the technique in volume animation.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism; 1.3.8 [Computer

Graphics]: Applications.

1. Introduction

Geometric deformation is an important aspect of com-
puter graphics and computer animation. With traditional sur-
face representations, the control of deformation is usually
achieved by moving the vertices of a polygonal mesh, or the
control points of a parametric surface. Many methods have
been proposed for specifying and controlling surface defor-
mation. During the past decade, we also witnessed the ex-
tensive use of image distortion techniques, which played an
important role in creating some stunning visual effects in the
entertainment industry. Because of the extra dimension of
information in volumetric representations and the increasing
availability of volume datasets, it is desirable to deform and
animate volumetric objects directly. Hence one of the critical
measurements for the practical usefulness of volume graph-
ics as a general purpose technology will be its capability of
specifying intuitively, representing effectively, realizing ac-
curately and rendering efficiently geometrical deformation
of volumetric objects.
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A collection of techniques for deforming volumetric ob-
jects have been developed for volume visualization '8, vol-
ume morphing 208, and volume animation 433, Whilst
many of these techniques were deployed successfully in spe-
cific applications, they lack in a unified conceptual frame-
work to bring these techniques together and lack in a consis-
tent approach to their implementation.

In this paper, we present the notion of spatial transfer
functions as a unified approach to volume modeling and an-
imation in the context of deformation. In Section 2 we will
give a brief review of various deformation techniques, fo-
cusing on those used in volume visualization, volume mor-
phing, volume animation and application areas such as med-
ical imaging. In Section 3 we will define the concepts of
spatial transfer functions in a broad scope of volume graph-
ics, highlighting the role of field-based representations and
embracing a generalized approach to the representation of
spatial transfer functions. In Section 4, we will demonstrate
the use of spatial transfer functions in volume visualization,
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volume sweeping, volume deformation and volume anima-
tion. In particular, we will describe the methods for modeling
and realizing a range of spatial transfer functions, including
simple procedural functions, operational decomposition of
complex functions, large scale domain decomposition and
temporal spatial transfer functions. In Section 5, we will dis-
cuss a small collection of implementation issues. We will
offer our observations and concluding remarks in Section 6.

2. Related Work

There has been extensive research effort in areas of geo-
metric deformation, and a large collection of major devel-
opments were captured in several surveys. These include
surveys by Mclnerney and Terzopoulos 23 on deformable
models in medical image analysis, Gibson and Mirtich 1
on deformable modeling in computer graphics, Lemos and
Wyvill 1 on deformable models in animation of articulated
figures. Noh and Neumann 25 on facial modeling and ani-
mation. In respect to volumetric representations, a number
of techniques have been developed, and applications in vi-
sualization, medical image analysis and computer animation
have been explored.

In particularT feature-based techniques 203 and

physically-based and physically-plausible techniques ! 15
were developed for deforming volume datasets. Deformable
models were applied to volume visualization '8, tensor
visualization 3%, segmentation and registration > 24, motion
analysis 2, and surgical simulation 222, Volume deforma-
tion also constitutes an integral component of many volume
morphing techniques 2% 7 and perhaps more significantly it is
an indispensable component in volume animation 3312, 13. 14,

Given a deformation specification that defines how an ob-
ject is to be deformed to another (typically in the form of
control information such as control points), it can be real-
ized using either forward mapping (e.g., revoxelization '#) or
backward mapping (e.g., space transformation 18). The back-
ward mapping approach can be traced back to the 1980’s
when Barr first introduced the concept of space warping for
deforming solids and parametric and implicit surfaces 3 4.
In 1995, Kurzion and Yagel extended this generic approach
for specifying and rendering volume deformation '8. Both
employed vector fields as the underlying representation in
modeling deformation, and both utilized a ray-based mech-
anism in rendering deformation. Whilst Barr focused on a
global space transformation, Kurzion and Yagel placed their
emphasis on local transformation by introducing the notion
of “ray deflectors”.

Previous research effort has resulted in a variety of meth-
ods for constructing and realizing deformable models. How-

T 1t is not possible to give a substantial list of literatures on defor-
mation and its applications. Here we highlight only those works that
are particularly relevant and some representative applications.
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ever, we do not seem to have a unified approach to the speci-
fication and representation of geometric deformation. With-
out such an approach, inevitably, we are unable to address
the following set of the questions:

e how to define deformation for a composite object built
upon a set of simpler objects using a constructive term,
how to incorporate deformation into a scene graph,

how to combine global and local space transformation,
how to combine different deformation techniques,

how to reuse and modify a deformation specification in
the same manner as an object specification.

3. Definitions and Concepts

In this section, we introduce the concepts of spatial transfer
function as a unified approach to specifying deformation in
volume modeling and volume animation. We first define the
notion of spatial objects, and then show how a spatial trans-
fer function can be specified and manipulated as a spatial
object. Finally, we discuss the merits of a particular type of
objects, namely spatial displacement objects.

3.1. Spatial Object

Let R denote the set of all real numbers, and E* denote 3D
Euclidean space. A scalar field is a function F : E’ - R.
Conceptually a scalar field F(p) is a generalization of a sur-
face function that models only those points on the surface.
A volumetric representation of an object can hence be speci-
fied as a set of scalar fields, Fy (p), F>(p), ..., Fi(p), that de-
fine the geometrical and physical properties of the object at
every point p in three-dimensional space. Such an object is
called a spatial object, which is a tuple, 0 = (Ag,A1,...,Ay),
of attribute fields defined in E>. In volume visualization and
volume graphics, it is common to define an attribute field
upon another using a transfer function, usually in the form
of Ai(p) = ®(A;(p)),p € E3 where ® : R — R. Transfer
functions are an intrinsic part of volume visualization, and
in particular, direct volume rendering. It is also common to
apply transfer functions during rendering, and this extends
their role beyond the modeling of attributes.

A volume dataset is a discrete specification of a scalar
field, which consists of up to three essential components: a
set of samples V, their topological relationships T and an in-
terpolation function I. The set V = {(p;,vi)|i = 1,2,...,n}
defines the known value v; at each sampling location p; in
E>. Some volume datasets (e.g., regular 3D grids) can be
represented simply by a 3D array of values with implicit ge-
ometry and topology, whilst others (e.g., curvilinear grids,
tetrahedral meshes) may require an explicit specification of
sample positions, {p;|i = 1,2,...,n} or topological connec-
tivities between the samples, T. The role of the interpolation
function I is to define the scalar values at all the points in E3
other than those sample positions {p;|i = 1,2,...,n}. Typi-
cal interpolation functions include trilinear interpolation for

(© The Eurographics Association 2003.
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regular grids, and barycentric interpolation for tetrahedral
meshes.

Hence objects built from volume datasets are merely a
subclass of spatial objects. As the concepts to be introduced
can be applied to objects defined upon volume datasets,
those specified mathematically or procedurally, and a com-
bination of both, we will refer to all spatial objects in their
general from 0 = (Ag,A¢, . ..,A;) though many objects illus-
trated will be built from volume datasets.

3.2. Spatial Transfer Function

A spatial transfer function, ¥ : E? — E3, is a function that
defines the geometrical transformation of every point p in
E3. It is used to modify the geometrical shape and position
of a scalar field A usually in the form of

A'(p) =A(¥(p)).

or a spatial object in the form of

o'(p) = 0(¥(p)) = (Ao(¥(p)), A1 (¥(P)),-.. . Ak(¥(P)))-

According to the above definition, an evaluation of A" at p
implies the evaluation of A at ¢ = ¥(p). As the actual point ¢
is transferred to p during the evaluation, W is in fact an back-
ward mapping from p to g. This definition is well suited for
the sampling process in both voxelization and ray-based di-
rect volume rendering. For projection-based rendering meth-
ods, however, it would be desirable to specify a spatial trans-
fer function as a forward mapping from ¢ to p. To maintain
the consistency in our discussion, we assume that all spatial
transfer functions presented are backward mappings from p
to ¢ unless it is stated otherwise.

The use of spatial transfer functions differs from that of
conventional transfer functions in a number of ways:

e In relation to a scalar field A(p), a spatial transfer func-
tion ¥ is applied to p prior to the evaluation of A, whilst a
conventional transfer function @ is applied after the eval-
uation.

e The essential output of ¥ is a point p’ € 3, and the es-
sential output of ® is a scalar value v/ € R. Typically, ¥
is a tri-variate function ( p;,p§, ph) =¥ (px, py, pz), whilst
& is a univariate function v/ = ®(v). Both ¥ and & can of
course be extended to include additional input variables.

e In relation to a spatial object o, ¥ is normally applied uni-
formly to all of its attribute fields, whilst ® is commonly
employed to specify an undefined attribute field through a
mapping from another, or modify the value ranges of an
attribute field through re-mapping.

A spatial transfer function W is in fact composed of three
sub-functions, ¥y, ¥y, ¥; as:

p)} / Wx(px, py, )
py|=»p =¥(p) = | ¥y(px, Py, p:)
2 W (px, Py, Pz)

(© The Eurographics Association 2003.
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We notice a useful feature that Wy, ¥y, ¥; : E? — R are es-
sentially scalar fields. Hence all spatial transfer functions of
a form W = (W, ¥y, ¥;) can be considered as a class of
spatial objects °. We use s = (Ax(p),Ay(p),Az(p)) to denote
this particular class of spatial objects, and conveniently call
them spatial transfer objects or ST objects. In the following
discussions, the terms “ST object” and “spatial transfer func-
tion” are used interexchangeably, though the former places
more emphasis on the specification of a spatial transfer func-
tion.

3.3. Specifying Spatial Transfer Functions

In much the same way as conventional spatial objects,
the attribute fields, Ax(p),Ay(p),Az(p) (i.e., sub-fields
¥y (p), ¥y(p), ¥z(p)), of an ST object s can be defined using
mathematical, procedural and discrete specifications 0. An
example of a discrete specification is a volume dataset. Fig-
ure 1 shows three simple spatial transfer functions applied
to a spherical spatial object, which comprises a translucent
shell and a solid core.

o
9

(a) the original spatial object (b) split (two views)

(c) squeeze

(d) sweep (rotational stretch)

Figure 1: The application of three simple spatial transfer
functions in (b), (c) and (d) respectively, to a spatial object
shown in (a).

To model a volume graphics scene, a spatial transfer func-
tion can be incorporated into most types of volumetric scene
graphs. In the case of the viib API 3!, a spatial transfer func-
tion is associated with and applied to a spatial object in a way
similar to that for geometrical transformations such as rota-
tion and scaling. In the case of the CSG tree used in implicit
surface modeling 34, pre-defined spatial transfer functions
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are built into the system, and applied to objects, as unary
operators.

Under the algebraic framework of Constructive Volume
Geometry (CVG) %, we can introduce spatial transfer as a
generic operator [ (s,0) where s is an ST object and o is
the object to be spatially modified. Such an algebraic notion
unifies

e the mechanism for specifying ST objects and that for
other spatial objects (i.e., through the use of scalar fields),

e the mechanism for manipulating ST objects and that for
other spatial objects (i.e., through the use of conventional
transfer functions),

e the mechanism for applying a spatial transfer operation to
a spatial object and that for other CVG operations (such
as union and intersection),

e the mechanism for defining a global space transformation
(i.e., an unbounded ST object) and that for a local space
transformation (i.e., a bounded ST object).

Like other spatial objects, we can modify an ST object s us-
ing another ST object sp by applying a spatial transfer opera-
tion [2|(s2,s1). This allows a complex spatial transfer opera-
tion ¥(p) to be constructed from a set of simpler operations
Yi(...Pa(P1(p))...) as aCVG term:

’g(m(sh’m“"g(sﬁsl)vo)

It also allows a spatial transfer operation W(p) to be applied
to a complex spatial object o constructed from simpler ob-
jects 01,09, ...,0n, in the form of a CVG sub-term Q, that
is,

IE(S,O) = 5(579(017027 cee 70"))

Figure 2 shows an example of two spatial transfer functions
applied to a spatial object, and an example of a spatial trans-
fer function applied to the union of two simple spatial ob-
jects. In the first example shown in Figure 2(a), the object in
Figure 1(a) is first swept rotationally as in Figure 1(d) and
then split open in a manner similar to Figure 1(b). In the sec-
ond example, a composite object, shown in Figure 2(c bot-
tom), is first constructed by applying the CVG union opera-
tor | U] to the spherical object in Figure 1(a) and a cylindrical
object that has an amorphous outer layer (Figure 2(c top)).
A squeezing function (similar to that in Figure 1(c) is then
applied to the composite object, resulting in a spatially trans-
ferred composite object as shown in Figure 2(b).

3.4. Spatial Displacement Object

Given g = ¥(p), we can introduce a spatial displacement
function A(p) = ¥(p) — p = g — p. Similarly we can spec-
ify A(p) as a type of spatial object d, which we call a spatial
displacement object or an SD object. We can define a generic
constructive operator [Ib that takes an SD object d, and ap-
plies to an spatial object o in the form of ¢ = p+A(p), where
A(p) is defined by d.
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Figure 2: Constructing CVG terms involving ST objects.
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The operation [Ib](d,0) seems to have introduced addi-
tional work in evaluating ¥(p), and especially specifying
A(p) (or an SD object) is less intuitive than that for ¥(p)
(or an ST object). However, A(p), which defines the relative
displacement, exhibits some useful features that ¥(p) does
not. Like other ordinary spatial objects, conventional trans-
fer functions can be used to define or modify attribute fields
of an SD object, and combinational operators, such as union,
intersection and blending, can also be applied to SD objects.

4. Spatial Transfer Function in Action

In this section, we demonstrate the use of spatial transfer
functions with the aid of examples in volume visualization,
sweeping, deformation and animation. In association with
volume visualization, we show how procedural spatial trans-
fer functions can be used effectively to assist in visualiza-
tion. In association with volume sweeping, we discuss the
specification of complex spatial transfer functions, and the
modeling of backward mapping for a forward sweeping. In
association with volume deformation, we show how a com-
plex spatial transfer function can be decomposed into a set
of relatively simpler operations. In association with volume
animation, we discuss the large scale domain decomposition
when spatially transform a complex animation model.

4.1. Volume Visualization

One of the most important uses of volume visualization is to
examine the interior of volumetric objects embedded in vol-
ume datasets. Although the introduction of transparency and
amorphous effects through the use of transfer functions is an
effective means to display the internal structure, it is some-
times more intuitive, and hence more effective, to employ
“direct actions” such as simply cutting an object open. Fig-
ure 3 shows three such “direct actions” digitally on a rabbit
heart dataset in a non-invasive manner.

The spatial transfer function W; in Figure 3(b) tears open
the heart, revealing the internal structure clearly. The spa-
tial transfer function W, in Figure 3(c) digitally dissects
the heart to four quarters and translates each quarter away

(© The Eurographics Association 2003.
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(a) an ordinary view (b) torn-open deformation

(c) quartile dissection (d) inside out

Figure 3: Four visualizations of a heart dataset.

Figure 4: Opening a CT dataset.

from the center axis. The spatial transfer function W3 in Fig-
ure 3(d) takes an axis passing through one of its chambers,
and flip the heart inside out about the axis.

Figure 4 shows the application of an opening spatial trans-
fer function W, to a more complicated volume dataset. From
the opening, one can clearly visualize the internal structures,

(© The Eurographics Association 2003.
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including bones and soft tissues, in relation to the external
skin surface.

Two example spatial transfer functions, ¥, and W4, which
are defined in a normalized volume coordinate system where
p € [0,1]%, are given below:

lPZ(p) = (‘VZ(Px»O-3)v‘V2(Py:0~3):Pz)7

a/(1—b) 2a < 1-0b);
Y (a,b) =< 1—(1—a)/(1-b) 2a>1+Db);
—1 otherwise.

px <0.340.2p;;
Px <0.34+0.2ps;
otherwise.

(px+0.2—0.2pz, py, pz)
(px —0.240.2p:, py, pz)
(_17 _17 _1)

¥4(p)

4.2. Volume Sweeping

Volume sweeping is a modeling method for defining a spa-
tial domain. Winter and Chen recently reported that imagery
templates (i.e., 2D images and 3D volume datasets) can be
used to construct a swept volume effectively 32. Conceptu-
ally, a sweep is a way of specifying an ST object, and an im-
agery template is composed of one or more discrete scalar
fields, with which a spatial object can be defined. The con-
struction of a swept volume is hence an application of a spa-
tial transfer function ¥ to a spatial object. Although only
spatial objects built from images and videos were considered
in 32, the method can be generalized to any spatial objects.

Technically, however, it is not always straightforward to
obtain a spatial transfer function W, in the form of a back-
ward mapping, from the description of an arbitrary sweep
p, which may include the specifications of a sweeping tra-
jectory, a sweeping direction-vector, a sweeping up-vector,
and a scaling function. Hence, a specification of a sweep is
considered simple if we can obtain a spatial transfer function
W which is an inverse mapping of p, can be evaluated with
reasonable accuracy and a reasonable amount of computing
resource, and facilitates a one-to-one or a many-to-one map-
ping from the swept space to the template space. If ¥ is a
one-to-many or many-to-many mapping, a constructive op-
erator must be applied to the multiple values sampled from
the template space. If ¥ cannot be evaluated with reasonable
accuracy and a reasonable amount of computing resource,
voxelization will likely be a better option 32.

Figure 5 shows two sweeps with a volume dataset as
the sweeping template. One “stretches” the volume dataset
along a Bézier trajectory, whilst the other sweeps the dataset
in sections using a more sophisticated function for speci-
fying the volume/path association. The Bézier sweeps used
in the images are directly evaluated using a numerical root
finder 32.
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(a) stretching repeating(b)

Figure 5: Sweeping a CT dataset along a Bézier trajectory.

Figure 6 shows two examples of sweeping a volume
dataset of a small flame captured as a video. In (a), two sep-
arate sweeps are combined together using a CVG union op-
eration, creating a small explosion. In (b), a sweep, which
uses a smaller number of video frames, is combined with
other objects modeling a matchstick. Both demonstrate the
use of spatial transfer functions in simple volumetric scene
graphs.

(b) matchstick

(a) union of two sweeps

Figure 6: Sweeping a video of a flame.

4.3. Free-Form Volume Deformation

For simple deformation of a volume dataset such as those
shown in Figure 7, the most effective way is to define a pro-
cedural spatial transfer function. However, most procedural
specifications are not suitable for direct manipulation in a
user interface though they can be controlled using some pa-
rameters.

One well-established deformation technique in surface
graphics is Free-Form Deformation (FFD) originally devel-
oped by Sederberg and Parry ?7. It allows a user to embed
an object in a lattice of grid points, and manipulate the grid
points to achieve desired deformation. It is therefore impor-
tant to deploy this technique in volume graphics.

Consider a global FFD where a bounded spatial object is
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(a) squeeze (b) twist

Figure 7: Relatively simple procedural deformation.

embedded in the parameter domain of a free-form volume
P(u,v,w), where (u,v,w) € [0, 1]°. The role of a spatial trans-
fer function in this case is, for a given point p € IE3, to deter-
mine the corresponding parametric coordinate (pu, pv, pw)
if p resides inside or on the surface of P(u,v,w). From
(pu, pv,pw), a point g in the original spatial object can be
easily obtained. However, for most commonly-used defor-
mation prescription, such as Bézier and B-spline, it would be
incredibly difficult to determine a backward mapping from
the Euclidean space E? to the parameter space.

We thus adopt an approach similar to that of Joy and
Duchaineau '7 who discretized the boundary faces of a pa-
rameter volume. Consider Bézier as the deformation pre-
scription. We discretize parametric space by imposing on
it a 3D rectilinear grid comprising cubic or cuboidal cells
in parametric coordinates (which are hexahedral regions
(i.e., irregular six-face boxes) in the the deformed Euclidean
space). Each vertex in the grid, where a parametric coor-
dinate, (vu,vv,vw), is known, is transformed into Euclidean
space using the Bézier volume equation:

3 3 3
PB(VMaVWVW) = Z Z ZCi,j,kBi(Vu)Bj(vV)Bk(VW)7
k=0 j=0i=0

where (v, vy, vw) € [0, 1] is the parametric coordinate of the
vertex, C; j  is a Bézier volume control point and B;, B, By
are the Bernstein basis functions. Each vertex in the grid
maintains a record of both the original parametric coor-
dinate (vu,vv,vw) and the computed Euclidean coordinate
(vx,vy,v;). Hence each cell encloses a small parametric do-
main, which is further divided into six tetrahedra. Given the
information stored on the vertices of each tetrahedron, an ap-
proximate local spatial transfer function can be obtained by
using barycentric interpolation. The problem of determin-
ing (pu, pv, pw) is thus transformed to the search for a tetra-
hedron containing p — a point location problem. Hence a
highly complex spatial transfer function is decomposed into
many simpler spatial transfer functions operating on individ-
ual tetrahedral domains.

Figure 8 shows a set of five free-form deformations of

(© The Eurographics Association 2003.
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volumetric objects. A detailed description of a brute force
rendering method, its acceleration using a custom octree,
and control specifications used in the examples can be found
in 30,

(c) lift the top (d) pull at top and sides

(e) horizontally bend the text string

Figure 8: Free-form volume deformation.

4.4. Volume Animation

In 121314 3 gystem for creating volume animations was
presented. It was based upon a volumetric skeleton, which
was extracted from a volumetric representation and was an-
imated. New volumes were reconstructed about the trans-
formed skeletons and then rendered using a ray caster. In 23,
a system called VolEdit was presented which allowed a user
to manipulate or animate a volume in real-time. In VolEdit,
the skeleton is used only to help specify deformation and
logically subdivide the volume into components. Each skele-
ton “limb” defines a bounding box about a portion of the vol-
ume. The bounding boxes are determined using mid-plane
geometry ¢ which maintains connected rectangular regions
during animation by adding planar polygons at the joints.
The skeleton can be deformed interactively, through the
VolEdit interface, or off-line, for example, using a standard

(© The Eurographics Association 2003.
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animation package such as Character Studio ' or Maya 2.
In 28, the volume was rendered using the texture mapping
hardware by slicing the bounding boxes and mapping back
to the original volume. The bounding boxes are of a sim-
ple geometry that can support interactivity. This approach
to volume animation well suited to be realized using spatial
transfer functions in conjunction with a volume scene graph.

A temporal spatial transfer function is a spatial trans-
fer function that defines geometrical transformation over
a temporal domain, i.e., p[t] = ¥(p[0],), tmin <t < tmax.
A kinematic specification typically defines a series of sub-
functions, ¥1,%¥,,¥s,... over a discrete set of time steps.
Given a spatial transfer function for animating an actor built
from one or more volume datasets, one can create new dis-
crete volumetric representation of the actor at each time step
using voxelization. However, this will incur an excessive
amount of storage for any complex actor models. An alterna-
tive approach is to maintain a temporal spatial transfer func-
tion (or a series of sub-functions). Together with the original
static model, such a spatial transfer function can be rendered
directly. Hence there is no need to generate explicitly dis-
crete volumetric representations for a deformed actor.

There are two different cases for animation. The simple
case is that the each volume dataset (part of a scene) has a
set of temporal spatial transfer functions governing its mo-
tion. The temporal spatial transfer functions are applied di-
rectly, just as the regular spatial transfer functions, resulting
in an animation. A more complicated case arises for anima-
tion within volume datasets (i.e., animating parts of a vol-
ume) or for a set of volume datasets which must maintain
connectivity over the animation (i.e., animating a composite
object).

For the latter case, we utilize the “skeleton” concept
from 1214 which is an intuitive mechanism to define kine-
matic animation. A skeleton is of a set of skeletal segments,
each of which defines a box-like bounding region of the vol-
ume that should normally deform together. As the anima-
tion progresses, the box-like hexahedral regions change to
maintain connectivity about the “joints”. This representation
can also be used to keep objects which are composed from
different volume datasets connected. Whilst the connectiv-
ity is useful in many circumstances, it is not an essential
requirement. As shown in Figure 9, different regions of a
volumetric actor (e.g., a spatial object built from the Visi-
ble Human dataset) can be made to deform in a disjointed
manner though the original skeleton and the volumetric rep-
resentation are both connected. Although this is of a creative
nature in the context of volume animation, it shares the same
spatial transfer mechanism with Figure 3(c), which is of a in-
vestigatory nature in the context of visualization.

Because many of the tools for standard computer ani-
mation (such as motion capture) use skeletons to control
kinematics, one of the main advantages of using a skele-
ton in volume animation is that the dynamic specifications
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Figure 9: Regions of a volumetric actor moving apart.

produced by these tools can now be incorporated in a vol-
ume graphics pipeline such as the v/ib pipeline 3!. Figure 10
shows five frames extracted from an animation of the visi-
ble human is shown through a scene modeled and rendered
using vl/ib. The Visible Human actor was decomposed into
about 15 hexahedral regions, each is associated with a spatial
temporal transfer function. The joining of these hexahedral
regions is achieved using the union operator in vlib.

5. Ray-based Software Implementation

In the above sections, we have discussed the modeling aspect
of spatial transfer functions. To render a volumetric scene
graph involving spatial transfer functions, one may (i) vox-
elize the scene graph and then render the resultant volume
dataset, (ii) project elements of the scene graph (where spa-
tial transfer functions are forward mappings) with the aid
of a visibility determination algorithm, or (iii) evaluate the
scene graph using a ray-based renderer. Approach (i) may
not always be practical due to the huge storage space re-
quirement, and the likely degeneration of data quality. Ap-
proach (ii) could be hindered by unpredictable collisions be-
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tween different sub-graphs caused by spatial transfer func-
tions. Approach (iii), though it may not be the fastest in ren-
dering speed, inherently facilitates direct evaluation of a vol-
umetric scene graph and associated spatial transfer function
during rendering time.

To evaluate a spatially-transformed spatial object o (p) =
o(¥(p)), we need first compute the actual point to be sam-
pled g = ¥(p), then sample all attributes of object o at posi-
tion ¢ and finally render the sampled attributes at p for object
o.

To render the animation shown in Figure 10, a combi-
nation of a backward and forward mapping algorithm was
used. The entire volume is rendered as a backward mapped
process, and this represents the gross motion as the Visible
Human actor is animating through the dataset. Within these
bounds, individual limbs are defined in a manner of forward
mapping, that is, the control nodes of the “bounding regions”
(hexahedral for this implementation) are transformed in line
with time. A ray hitting one of these transformed boxes must
then perform an inverse transformation to determine the ac-
tual scalar value of that intersection point. The specification
and implementation of this particular spatial transfer func-
tion is similar to the ray-box intersection in TROVE 21, Al-
ternatively, entire space of each individual hexahedral region
can be backward mapped, using a backward spatial transfer
function, to the corresponding region in the original dataset
for rendering.

The advantage of using a forward mapping process for
moving regions is that it can take advantage of hardware as-
sisted rendering. This can be achieved by rendering forward-
mapped limbs by inverse mapping the sliced polygons. This
would enable skeleton based interactive multi-volume scene
editing. Furthermore, the use of hexahedral bounding re-
gions (simple geometry) makes it suitable for achieving
higher interactivity with hardware rendering.

6. Conclusions

We have presented the concept of spatial transfer functions,
and the method for specifying them as spatial objects. This
has provided us a unified approach to the specification of de-
formation in volume modeling and animation, and facilitated
the use of volume scene graphs for constructing complex de-
formable models. We have demonstrated the capability of
this unified approach through examples of its deployment in
volume visualization, volume sweeping, free-form deforma-
tion and volume animation.

This generalization has brought a range of deformation
techniques into a common software framework, and it has
provided a unified interface to the implementation of these
techniques, for example, procedural deformation in volume
visualization, backward mapping in template sweeping, op-
erational decomposition and domain decomposition in free-
form deformation and volume animation. Some of these

(© The Eurographics Association 2003.
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techniques can be used effectively in volume visualization.
Many have the potential to be deployed in virtual environ-
ment for supporting complex interactive manipulation of
volumetric objects. All techniques presented can play a role
in volume graphics for supporting creative modeling and an-
imation using volumetric representations. We believe that
this unification will help shape the future generation of vol-
ume graphics software.
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