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Abstract: 

A curve-skeleton of a 3D object is a stick-like figure or centerline representation of that object. It is used for diverse 
applications, including virtual colonoscopy and animation. In this paper we introduce the concept of hierarchical 
curve-skeleton and describe a general and robust methodology which computes a family of increasingly detailed 
curve-skeletons. The algorithm is based upon computing a repulsive force field over a discretization of the 3D object 
and using topological characteristics of the resulting vector field, such as critical points and critical curves, to extract 
the curve-skeleton. We demonstrate this method on many different types of 3D objects (volumetric, polygonal and 
scattered point sets) and discuss various extensions of this approach.  
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Figure 1: Curve-skeleton hierarchy for the (a) cow model: (b) core skeleton, (c) using 30% low divergence seeds, (d) 

using 55% low divergence seeds. 
 

1 Introduction 

A skeleton is a useful shape abstraction that captures the essential topology of an object in both 

two and three dimensions. It refers to a thinned version of the original object, which still retains 

the shape properties of the original object. In 2D, the skeleton is also referred to as the medial-

axis. In 3D, the term “skeleton” has been used to describe both a medial-surface and a more line-

like representation. In the grass-fire analogy given in [9] the skeleton consists of the points where 

different fire fronts intersect. If a fire was simultaneously started on the perimeter of the grass 
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(the boundary of the object) the fire would proceed to burn towards the interior of the object. 

When two fire fronts meet each other the fire will be quenched. In 2D, the fire will quench along 

a curve. In 3D, the fire fronts will meet along a surface or a curve. 

Recently, there has been interest in extracting a line-like 1D skeletal-representation from a 3D 

object. The line-like skeleton is also referred to as a curve-skeleton [38], inverse-kinematic 

skeleton (IK-skeleton) [36], or centerline. In this paper, we refer to it as a curve-skeleton. Curve-

skeletons are useful for many different geometric tasks, such as, virtual colonoscopy and virtual 

endoscopy [20][45], 3D object registration and visualization [5][6][32], computer animation 

(both polygonal and volume animation) [8][15][16][27][36][39][42], shape matching 

[11][35][37], surface reconstruction [26], vessel tracking [6], and curved planar reformation 

[22][23]. While there is no precise definition for a curve-skeleton, there are numerous desirable 

properties of both the skeleton and the skeleton computation process. These properties depend 

upon the application that the curve-skeleton is being used for, and include some of the following: 

the skeleton should be thin, ideally 1-voxel thick, it should capture the “essential shape” of the 

object (homotopy) [24], it should be centered within the object, it should be connected, different 

segments of the skeleton should be distinguishable (component-wise differentiation), and every 

interior boundary point should be visible from the skeleton (reliability [20]).This last property  is 

desirable for virtual colonoscopy applications. Furthermore, the skeleton computation process 

should be robust and insensitive to small perturbations/noise on the boundary or to rotations of 

the object, efficient to compute, reversible, so that the original object can be reconstructed from 

the skeleton and hierarchical, i.e., allows different hierarchies or level-of-detail skeletons 

(multiscale [33]) to be computed where each hierarchical level is included in the next level.  

Many of these properties are conflicting, for example an object cannot be accurately 

reconstructed from a thin skeleton. The last property is an important one since a hierarchical 

skeleton would allow different curve-skeletons to be computed using the same process. An 

example of a hierarchical curve-skeleton is shown in Figure 1.  

In this paper, we introduce the concept of a hierarchical curve-skeleton and present a method to 

extract these curve-skeletons from a general 3D object. We also demonstrate how this technique 

is applicable to all types of 3D objects: polygonal surface representations, volumetric datasets 

and scattered point sets. Extensions to mesh decomposition and animation are also discussed. 

The algorithm was applied to many 3D objects, some of which are shown in this paper (the 
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others can be seen on our web site [43]). The method is based upon using a repulsive force field 

[2][12] and concepts from vector field topology [21] to extract families of curve-skeletons. The 

method automatically detects “nodes” in the skeleton, which can be used as branch points for 

virtual navigation [45] or as joints for animation [15][16][39][42].  

2 Literature Review 

There has been quite a lot of work in generating 2D medial-axes, 3D medial surfaces and 3D 

curve-skeletons. In this paper, we are concerned with curve-skeleton generation from a 3D object 

and limit our discussion to work most relevant to the approach described here (a full listing of 

papers can also be found at [4][43]). A 3D object can be represented either as a set of bounding 

polygons, scattered points on the surface of an object, or as a segmented volume. Different 

techniques work on different types of objects. 

In [38], a method to discretely determine the curve-skeleton of surface-like objects is given. 

Voxels are classified as edge, inner, curve or junction using a mask, then removed and 

reclassified until only curve voxels remain. No hierarchy is defined and joints are not identified. 

Because it is discrete, the method is sensitive to noise on the boundary. A similar thinning 

algorithm is given in [30]. In [40], a 2.5D algorithm is described which determines a 2D skeleton 

for each slice of a 3D voxelized dataset and the results are then merged. This method has the 

ability to produce level-of-detail skeletons by tweaking the parameters but it is not a strict 

hierarchy and it breaks down for certain parameter values.  

Many approaches are based on first computing the distance field or distance transform and then 

attempting to thin, cluster and/or path search to find a centerline [15][16][20][29][42][45] 

computing the gradient to help determine the “sink” direction [10][34]. These algorithms are 

very sensitive to noise and hierarchy is not determined. Furthermore, the distance field is not an 

ideal function for “box-like” objects. 

Geometric algorithms are given by [3][26] where the Voronoi Diagram is used to help determine 

the medial surface. Clustering and simplification must be used to get a curve-skeleton (which 

was not the focus of these papers), and no hierarchy is identified. 

In [41], a curve-skeleton for animation is computed from scattered points by computing a 

neighborhood graph. The neighborhood graph is traversed from a user-selected source, and the 

centers at each level form the curve-skeleton. The results vary depending upon the selection of 

3 
 



the source point and the resulting skeleton is not always centered. In [39], a geometric method is 

presented which clusters the surface polygons (mesh decomposition) and then determines the IK 

skeleton from the polygon clusters. Levels-of-detail can be generated by adjusting the size of the 

polygonal surface clusters, however, the resulting skeletons will not be a strict hierarchy. In this 

paper, we show how the hierarchical curve-skeleton can be used to decompose the polygon mesh 

(the inverse of [39]).  

Another set of methods attempts to compute some continuous quench function over the object 

and detect the extremes of that function (which should lie close or on the centerline of the 

object). These methods include those that use a type of field [1][2][10][12][18][25][27], radial-

basis function [28] and intensity maxima [5][6][32]. Most of the above papers do not discuss a 

hierarchical approach to the curve-skeletonization problem. However, these methods are similar 

to the approach taken here and are discussed in detail below.  

In [2] and [12], 2D and 3D skeletonization algorithms based upon a generalized potential field 

are presented. “Seed” points near the convex corners of the object are selected and the repulsive 

force (gradient of the potential field) is analytically derived only along a path determined using a 

force-following algorithm. Each path started at a seed point ends at a potential minimum 

detected by a major change in the repulsive force vector direction. The resulting skeleton 

segments are usually disconnected pieces and a separate re-connection step is necessary to assure 

connectivity. No hierarchy is defined and only polygonal objects can be handled.  

A similar approach is taken in [44]. The visible repulsive force defined there is a special case of 

the repulsive force used in [2] and [12]: the Newtonian repulsive force. Additionally, the force is 

computed using only a few samples on the boundary (the visible set) determined by the 

intersection with a number of sampling rays originating at the current position on the path. The 

resulting skeleton is not smooth and the identified joints are not robust. In [27], the same visible 

repulsive force is used, but the force field is computed over the entire voxelized object. The 

skeleton is extracted using a combination of thinning, clustering and graph searching algorithms 

and it is unclear how these affect the final position of the identified joints. 

3 Methodology 

Without loss of generality, and to simplify the discussion in the remainder of the paper, we 

assume that a 3D object refers to a 3D voxelized discretization of that object. Polygonal models 
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can be converted into volumetric objects by voxelization [14]. In Section 4.1, we also show how 

the method is applicable to objects represented as scattered point sets. 

The methodology presented here is an enhancement and extension of the methods presented in 

[2][12][27][44]. We explicitly compute a repulsive force field over the entire object as in [27] 

(not just along the path as in [2][12][44]). The resulting 3D dataset is a vector field: a 3D array 

where each voxel contains a vector value (magnitude and direction). The difference from all the 

previously discussed approaches is that once we compute this vector field, we use its topological 

characteristics [13][17][21] such as critical points and low divergence points together with high 

curvature points on the boundary, to extract our skeleton hierarchy. 

The presented methodology has a number of significant advantages over the previous methods, 

namely: it directly produces connected skeletons without the use of a re-connection step, it works 

both on un-segmented objects (where only the boundary of the object is known) and segmented 

objects (where the interior is known), it has the ability to produce a strict hierarchy of skeletons 

and it has the ability to automatically extract an “IK skeleton” that can be used for animation i.e., 

the joints are automatically identified. 

3.1 Repulsive Force Function 

Our repulsive force is defined similarly to the repulsive force of the generalized potential field 

[2][12]. The key idea behind the potential field approach is to generate a force field inside the 

object by charging the object’s boundary. The basic procedure to compute the generalized 

potential and force for polyhedral objects is summarized in [12]. Since our algorithm operates on 

3D objects represented by voxels, our boundary elements are also voxels, and we consider them 

to be point charges (this also simplifies the calculations involved in computing the force field). A 

boundary point is defined as an object voxel that has an exterior (empty) neighbor. An interior 

voxel (interior point) is an object voxel whose neighbors are all object voxels. 

The repulsive force at a point due to a nearby point charge is defined as a force pushing the point 

away from the charge with a strength that is inverse proportional to a power of the distance 

between the point and the charge namely: 

mPC R
CPF =       ( 1 ) 
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where PCF  is the repulsive force at point P, due to point charge C, CP  is the normalized vector 

from C to P which gives the direction of the force, R is the distance between P and the charge C 

and the power m is called the order of the force function (m=2 for the Newtonian force).  

The force at a point P due to the influence of multiple point charges can be found discretely by 

simply summing all the forces at P. 

∑=
i

PCP i
FF       ( 2 ) 

where PF  is the resulting force at point P and 
iPCF ’s are the forces due to the individual point 

charges Ci.  

We consider every boundary voxel to be a point charge and the repulsive force at each interior 

voxel is explicitly computed by summing the influences of all the point charges. The resulting 

vector field is also called a force field. 

 

 
Figure 2:  Repulsive force field of a 3D chess piece. The vectors at each point are shown with arrows. The middle 

slice of the 3D object is shown in zoom. 
 

A high order of the force function (m) will cause the local boundary points to have a higher 

influence on a given interior point than the more distant boundary voxels, thus creating a vector 

field with sharper path-lines because it follows the local boundary topology more closely. A low 

value for the m parameter will produce a smoother vector field, with more rounded corners, since 

the vector direction at a particular point is now influenced by more boundary charges [2]. Figure 

2 shows the repulsive force field along a center slice of a 3D chess piece. 

Because the algorithm uses all of the boundary points for force computation, visibility errors can 

result for objects with tapered limbs (like a comb) since individual points within each prong of 

the comb cannot “see” boundary points on the other prongs and those points should not be 

considered in the force field calculation [12][2]. This can be overcome by determining the 
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visibility with a line-of-sight calculation, which checks to see that the surface is not pierced when 

connecting a point to a charge with a straight line. While this is more accurate, it unfortunately 

increases the running time substantially and is only applicable if the surface is known. Using a 

high order of m also minimizes this effect [2] by reducing the influence of more distant boundary 

charges. 

The computational complexity of the force field calculation depends on the number of object and 

boundary voxels:  where No is the number of object voxels and Nb is the number of 

boundary voxels. Since Nb is a fraction of No, the computational complexity is approximately 

O(No

)( NbNoO ×

2). This is the most time consuming step of the algorithm, accounting for about 98% of the 

total running time. 

3.2 Computing the Curve-Skeleton 

Given a 3D vector field, certain concepts from vector field visualization can be used to identify 

three different types of “seed points” in the vector field. The seeds are the starting point of “field-

lines” or “stream-lines” (these lines are found by “force-following”) which define our curve-

skeleton segments. 

3.2.1 Critical points and the “core skeleton” 

Critical points are important vector field topology components and are often used in vector field 

visualization. These are the points where the magnitude of the force vector vanishes. In Figure 2, 

a critical point is visible in the middle of the head of the chess piece. In [13][17][21][31], a full 

discussion of the visualization of vector-field topology and the different types of critical points 

can be found. In what follows, we present a brief description relevant to extracting the curve-

skeleton.  

Critical points are difficult to locate in a vector field, particularly because they do not necessarily 

occur at the given sample locations, but often occur in between sampling points. A good 

heuristic for detecting critical points is described in [17]: a zero in the vector field occurs when 

all 3 components of the force vector (x, y and z) vanish, thus, if we can identify a region where 

each vector component changes sign, the region is a candidate for containing a critical point. In 

our case, the smallest region we can consider is a voxel cell; the force field value is evaluated at 

each of the 8 corners of a grid cell using tri-linear interpolation. Cells containing both positive 
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and negative values for every vector component (x, y and z) are potential candidates for 

containing critical points. Candidate cells are recursively divided into 8 sub-cells and the 

candidacy test is repeated for each sub-cell. The process ends either when a cell fails the 

candidacy test or when the cell is too small, and still a candidate, in which case a critical point is 

assumed to exist at the center of the cell.  

Once extracted, the critical points are classified. Different types of critical points can be 

identified [13][17][31] including: attracting nodes (where all vectors are pointing towards the 

critical point), repelling nodes (where all the vectors are pointing away from the critical point) 

and saddle points (where some vectors are pointing towards the critical point and others away 

from it). Critical points can be classified by evaluating the real and imaginary components of the 

eigenvalues of the Jacobian matrix of the vector-field at the critical point: a positive real part of 

an eigenvalue denotes the existence of a repelling direction (given by the corresponding 

eigenvector), a negative real part denotes an attracting direction, and an imaginary part describes 

a spiraling motion around the point. If all the real eigenvalues are of the same sign, the critical 

point is classified as an attracting (if negative) or repelling (if positive) node. The critical point is 

said to be a saddle if two real eigenvalues have the same sign and the third one has an opposite 

sign. Saddles are a special type of critical points for the purpose of extracting the curve-skeleton 

from a 3D object. Saddle points will occur between attracting or repelling nodes directing the 

flow towards one or another and can be used to connect them. Intuitively, the outward flow 

directed away from a saddle point, can only reach an attracting node or another saddle inside the 

object since the vector field was generated by the closed boundary of the object and points 

towards the interior. 

Path-lines are “seeded” from saddles in the direction of the eigenvectors corresponding to the 

positive eigenvalues, which indicate the outward flow. Next, a path-line force-following 

algorithm is applied which stops at another critical point or when it arrives at a previously visited 

location. The force-following algorithm evaluates the force value at each point along a path and 

moves in the force direction with small steps. Samples taken along the integration path started at 

a saddle point form a skeleton segment. Skeleton segments connecting all the critical points of 

the force field are known as critical-curves [21] and form the core skeleton.   
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The core skeleton represents level 0 in the skeleton hierarchy. However, the core skeleton 

contains only part of the central curve-skeleton for a given object. The next level-of-detail is 

added by considering another important feature of the force field: the divergence. 

3.2.2 Low divergence points and the “level 1 skeleton hierarchy” 

The divergence of a vector field in a given region of space is a scalar quantity that characterizes 

the rate of flow leaving that region. Divergence is an interesting property because it measures the 

“sinkness” of a point [10]. A negative divergence value at a point indicates that the flow is 

moving mainly towards the given point. Divergence can be computed at a grid point using the 

formula:  

z
F

y
F

x
FFdivF zyx

∂
∂

+
∂

∂
+

∂
∂

=⋅∇=  

where Fx, Fy, Fz are the force field components in the x, y and z direction. Of interest are points 

with low divergence values, which indicate a “sink”. Either a “local min” or a threshold can be 

used to identify new seed points (note that the user can determine using these values how many 

new seed points are identified). From each of these new seed points, a new field-line is 

generated. These field-lines will connect to the core skeleton. By varying the divergence 

threshold the user varies the number of seed points selected and correspondingly the number of 

new skeleton segments, generating an entire hierarchy of skeletons that we call the level 1 

skeleton. In Figure 1(b) the core skeleton of the cow is shown. In (c) and (d) varying thresholds 

values are applied to extract the divergence seeds. Different thresholds can be chosen based upon 

the application of the curve-skeleton. 

3.2.3 High Curvature points and the level 2 skeleton hierarchy 

Another set of seed points for skeletal segments consists of the convex corners of the object. 

These will create paths from the boundary to the skeleton as in [2] and generate the “tendrils” 

found in medial axis representations. For objects without convex corners, such as curved objects, 

the curvature on the boundary can be computed [19] and areas of high curvature (threshold) can 

be used to seed new path-lines. Local curvature maxima could also be used to determine 

boundary seeds. A disadvantage of boundary seeding based on the curvature is that it is affected 

even by small amounts of noise present on the object’s boundary. A possible solution to this 
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problem is to consider an extended neighborhood when computing the curvature at boundary 

voxels, not just the face, edge and vertex neighbors [19]. For certain applications, such as virtual 

navigation, boundary seeds could be used differently, i.e., to specifically generate certain 

navigation paths. All the boundary-seeded curves connect with the core skeleton. 

The skeleton segments originated at seed points on the boundary will create another level of 

hierarchy for each curve-skeleton computed thus far. Each of the level-1 skeletons will form the 

root of a new hierarchy developed by varying the number of boundary-seeded segments (via the 

user specified curvature threshold). We call this new hierarchy level the level 2 skeleton 

hierarchy.  

 

 
Figure 3: A 3D model of the letter K with varying curve-skeletons. (a) 3D model, (b) core skeleton using only 

critical points, (c) adding low divergence values (top 20%), (d) adding boundary seeds at high curvature boundary 
locations. 

 

3.3 The Algorithm 

The algorithm can be summarized in five steps as follows: 

Step 1. Identify the boundary voxels of the 3D object as the source of the repulsive force 

field. If 3D polyhedral objects are used, they can be discretized onto a 3D grid by voxelization.  

Step 2. Compute the repulsive force function at each object voxel. The function specification 

is given in Section 3.1. After computation, a 3D vector-field results.  

Step 3. Detect the critical points of the vector field and connect them using path-lines by 

integrating over the vector-field. The method is described in Section 3.2.1 and produces the core 

skeleton. 

Step 4. Compute the divergence of the vector-field at each voxel. Points with low divergence 

values are selected as new seeds for new skeleton segments. Varying the divergence threshold 

(given as a percentage, i.e., the top 20%) creates the level 1 hierarchy after the core skeleton.  

10 
 



Step 5. Compute the curvature at every boundary voxel and select new seed points based on 

a user-supplied curvature threshold, given again as a percentage of the highest curvature value in 

the dataset (i.e. top 30%). This adds another level of hierarchy to the core and divergence 

skeletons, the level 2 skeleton hierarchy. Note that the boundary seeds can be added either 

directly to the core skeleton or to a level 1 skeleton. However, a strict hierarchy is achieved only 

if the hierarchy levels below the current level are fixed: for example, in order to generate a strict 

level 2 hierarchy, the core skeleton and the number of divergence seeds must be fixed and only 

the number of boundary seeds is allowed to vary. The curve-skeleton extraction algorithm 

described here is general, and can also be used to extract a curve-skeleton from other types of 

quench functions such as [1][18][27][28]. 

3.4 Skeleton representations 

The skeleton produced by the algorithm consists of a set of seed points connected by points 

sampled by the force-following algorithm. Alternatively, each curve sample can be mapped to 

the nearest grid location, creating a less smooth voxel skeleton, consistent with the discretized 

nature of the original 3D object. Figure 4(a) shows the curve representation and 4(c) shows the 

corresponding voxel skeleton of a cow model. 

Another approach, useful for animation [16][42] or matching [37], is to transform the skeleton 

into straight-line segments by treating the critical points and the points where different skeleton 

segments meet as “joints” and connecting these points with straight lines. The resulting skeleton 

will be suitable for importing into commercial animation packages (Maya, 3D Studio Max, etc) 

since the joints are automatically detected (joints are the end-points of skeleton segments). In the 

discussion section we show how the “skinning” process (attaching surface polygons to the 

skeleton) can also be done automatically using the repulsive force field. Figure 4(d) shows the 

IK-skeleton for the cow. 

 

 
Figure 4: Skeleton representations for the cow model (a): curve skeleton (b), voxel skeleton (c) and straight-line 

skeleton (d). 
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4 Results and Discussion 

The algorithm was tested on many different volumetric datasets containing various 3D objects 

both volumetric and voxelized polygonal objects. In Figure 5, the core skeleton and a 

divergence-based skeleton (using the top 20% of divergence values) of a few sample objects are 

shown. More objects can be seen at [43].  

The divergence and the curvature thresholds should be chosen based on the application of the 

resulting skeleton. There are no optimal values for these parameters, as different applications 

may require skeletons of different complexity. The simplest skeleton our algorithm can extract is 

the core skeleton, using no divergence or curvature seeds. If a more complex skeleton is desired, 

the user can increase the number of divergence seeds, or the number of curvature seeds or both, 

keeping in mind that curvature seeds are very sensitive to noise on the boundary of the object. 

The order of the repulsive force function (m) has a dominant role in the skeleton outcome. It 

shapes the vector field, determining the location of critical points and divergence seeds. While 

the force function is object dependent, experimental results showed that a high order (m>5) 

produced stable results. The results shown in Figure 5 used m=6.  

 

 
Figure 5: Some 3D objects and their skeletons. The first column shows the core skeleton, the second shows the 

skeleton with 20% of the low divergence points. 
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Resolution/discretization is an important external factor affecting the performance of the 

algorithm and changing the accuracy of the solution, especially for scattered point sets. Clearly a 

43 grid will yield a less accurate result than a 603 grid. For the results in this paper (Figure 5), the 

voxelized datasets are all less than 703, except for the colon (Figure 5(f)) and angio (Figure 5(g)) 

datasets, which were on the order of 2003 (these were original voxel datasets). A 1 or 2 voxels 

thick object region will not have enough resolution to properly compute the repulsive force field 

in that region (this is a common simulation issue and standard mutiresolution solutions can be 

employed [7]). For such regions, the repulsive force field is extremely sensitive to even small 

boundary perturbations, resulting in discontinuities of the flow pattern inside the object’s 

boundaries. As a result, the interior skeleton can become disconnected just because the force-

following algorithm becomes stuck in these perturbed regions of the force field. To overcome 

this problem, one can either increase the resolution of the voxelization or pad the object with a 

number of extra layers of voxels (dilation), making the object thicker. Padding produces a 

smoothing effect of the object’s boundary, which makes it suitable for noisy objects, but can also 

merge object features that are very close to each other.  

The time to determine the skeleton is dominated by the repulsive force field computation. It 

ranged from about one minute for most of the datasets to about a half an hour for the colon 

dataset (Figure 5(f)) (on a standard PC). The computational complexity of the repulsive force 

field is O(n2) (see Section 3.1). Speedup of the computation can be achieved by sampling the 

boundary (i.e., using only a fraction of the boundary points for force field generation) or by using 

a less accurate distance computation in place of Euclidean distance.  

Currently, the entire force field is computed and stored in memory. Although the memory 

requirement is linear in the size of the original volume, for massive datasets, where the size of 

the vector field can easily reach gigabytes, out-of-core solutions need to be investigated. 

4.1 Scattered Point Sets 

For objects from scattered point sets where the surface is not known (such as from scanners) the 

skeletonization algorithm described here can still be used. Although a discrete grid is needed for 

the computation of the repulsive force field, it is not necessary to know what is inside vs. outside 

the object or to have the exact boundary of the object specified. Only a set of surface points is 
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necessary to compute the vector field. The sample points are mapped to a grid (Eulerian 

approach [26]) and the force field is computed on the entire grid (inside and outside the object, 

since these distinctions are not known a-priori). The curve-skeleton is then determined using the 

described algorithm. Many curve-skeletons will result: the correct interior one, which will be 

connected, and a number of exterior skeletons, which will hit the boundary of the grid and can be 

removed [26]. In Figure 6 we show the core and level-1 skeletons for a horse dataset represented 

by scattered points on the surface. If the sample points on the object’s surface are not dense 

enough, critical points (saddles) will occur between the sample points. These critical points are 

artificially created by the sampling process and should not be considered as part of the core 

skeleton. They can be removed by imposing a minimum distance constraint between a critical 

point and a surface sample. 

 

 
Figure 6: Curve-skeleton from scattered points: (a) scattered point set, (b) “core” skeleton. (c) skeleton inside (in 

black) and outside the object (in gray) using top 20% divergence points as seeds. (d) “inside-only” skeleton obtained 
from (c) by removing skeleton segments touching the bounding box. 

 

4.2 Hierarchical Mesh Decomposition 

The computed skeleton can also be used to generate a hierarchical mesh decomposition as in 

[39], taking advantage of the fact that we can differentiate between different segments of the 

skeleton. Starting from every boundary point of the object and following the field-lines with the 

same force-following algorithm used to extract the skeleton, we can attach each boundary point 

to the first skeleton segment encountered during the force-following process. Figure 7(b) shows 

the boundary decomposition of a cow model. The method generates a decomposition of the 

volumetric object into logical parts (component-wise differentiation), corresponding to the 

skeleton segments and it is similar to the “skinning” process of an animation character, where the 

surface polygons are attached to the skeleton segments manually.  
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Figure 7: Skeleton for animation and object decomposition. (a) Cow IK skeleton; each segment in a different color 

(b) object decomposition (points on the boundary are color coded by their associated skeletal segment). 
 

The resulting skeleton is very suitable to animation tasks. The algorithm can produce straight-

line skeletons and automatically identify the joints as the critical points or the points where two 

skeleton segments meet. In the case of a polygonal model, each surface polygon will be attached 

to one or more skeleton segments by tracing the field-lines starting at each of the polygon’s 

vertices. If all vertices are attached to the same segment, the entire polygon is assigned to that 

segment and if vertices are assigned to different segments, a weight is assigned to each segment 

based on distance or other factors for a smoother animation. 

The extracted curve-skeleton has many of the desirable properties described in the introduction. 

The force-following algorithm used to discover new skeleton segments guarantees that the 

skeleton is one-voxel thick. Homotopy however is not guaranteed and in fact can be 

compromised by inadequate resolution, producing disconnected skeletons even for connected 

objects. A post processing step could be used to connect the disjoint parts. Centeredness is also 

not guaranteed since each interior voxels is influenced by all boundary voxels even if they are 

not visible from that point. If visibility of a boundary point from the interior voxel is taken into 

account, then the resulting skeleton is more centered. Given the adequate resolution, connectivity 

of the core skeleton is guaranteed by the topology of the repulsive force field. It can be shown 

that between every pair of neighboring attracting nodes (where the force following stops), there 

must be a saddle point (because the force vector must change sign as we move from one 

attracting node to the other). These saddles are the seeds of our core skeleton and the skeleton 

segments seeded there will connect the attracting nodes. Connectivity of the level 1 and level 2 

skeletons is guaranteed because the force following algorithm stops only when reaching a 

previously visited location. Component-wise differentiation was demonstrated above by object 

decomposition. Reliability (seeing all the boundary points from the skeleton) is a post-process 

and it can be checked using the methods described in [20]. The algorithm is robust to noise on 
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the object’s boundary because a central core is detected. In Figure 8(d), the skeleton of a 3D 

object with noise is shown. The levels of hierarchy will be different for the object with noise and 

without but this can be controlled by varying the threshold used for the divergence values or by 

padding the object. Quantitative comparisons of the skeleton can be made by either comparing 

critical points and/or the entire path lines.  

 

 
Figure 8: Object (a) and skeleton (b). Object with artificially added noise (c) and corresponding skeleton (d). 

 

Although the algorithm presented here is not as fast as the distance field-based approaches, the 

resulting curve-skeleton is much cleaner. Reconstruction of the original object is generally not 

possible from curve-skeletons because they retain only the core of the original shape. 

5 Conclusions 

In this paper, we have presented a robust algorithm to extract the curve-skeleton from any 3D 

object, polygonal, voxel or scattered point set. It is based upon computing a repulsive force field 

and using vector-field topology to extract a family of hierarchical curve-skeletons. The curve-

skeleton hierarchy that results from the method described can be tailored to many different 

applications including virtual navigation, animation, and matching. 
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