
Computing Hierarchical Curve-Skeletons of 3D
Objects

NICU D. CORNEA, DEBORAH SILVER, XIAOSONG YUAN, AND RAMAN BALASUBRAMANIAN

Department of Electrical and Computer Engineering, Rutgers, The State University of New
Jersey, Piscataway, NJ 08855, USA
E-mail: cornea, silver, xiaosong, balaiitm @ece.rutgers.edu

Abstract:

A curve-skeleton of a 3D object is a stick-like figure or centerline representation of that object. It is used for diverse
applications, including virtual colonoscopy and animation. In this paper we introduce the concept of hierarchical
curve-skeleton and describe a general and robust methodology which computes a family of increasingly detailed
curve-skeletons. The algorithm is based upon computing a repulsive force field over a discretization of the 3D object
and using topological characteristics of the resulting vector field, such as critical points and critical curves, to extract
the curve-skeleton. We demonstrate this method on many different types of 3D objects (volumetric, polygonal and
scattered point sets) and discuss various extensions of this approach.

Keywords: 3D curve-skeleton, repulsive force field

Figure 1: Curve-skeleton hierarchy for the (a) cow model: (b) core skeleton, (c) using 30% low divergence seeds, (d)

using 55% low divergence seeds.

1 Introduction

A skeleton is a useful shape abstraction that captures the essential topology of an object in both

two and three dimensions. It refers to a thinned version of the original object, which still retains

the shape properties of the original object. In 2D, the skeleton is also referred to as the medial-

axis. In 3D, the term “skeleton” has been used to describe both a medial-surface and a more line-

like representation. In the grass-fire analogy given in [9] the skeleton consists of the points where

different fire fronts intersect. If a fire was simultaneously started on the perimeter of the grass

1

(the boundary of the object) the fire would proceed to burn towards the interior of the object.

When two fire fronts meet each other the fire will be quenched. In 2D, the fire will quench along

a curve. In 3D, the fire fronts will meet along a surface or a curve.

Recently, there has been interest in extracting a line-like 1D skeletal-representation from a 3D

object. The line-like skeleton is also referred to as a curve-skeleton [38], inverse-kinematic

skeleton (IK-skeleton) [36], or centerline. In this paper, we refer to it as a curve-skeleton. Curve-

skeletons are useful for many different geometric tasks, such as, virtual colonoscopy and virtual

endoscopy [20][45], 3D object registration and visualization [5][6][32], computer animation

(both polygonal and volume animation) [8][15][16][27][36][39][42], shape matching

[11][35][37], surface reconstruction [26], vessel tracking [6], and curved planar reformation

[22][23]. While there is no precise definition for a curve-skeleton, there are numerous desirable

properties of both the skeleton and the skeleton computation process. These properties depend

upon the application that the curve-skeleton is being used for, and include some of the following:

the skeleton should be thin, ideally 1-voxel thick, it should capture the “essential shape” of the

object (homotopy) [24], it should be centered within the object, it should be connected, different

segments of the skeleton should be distinguishable (component-wise differentiation), and every

interior boundary point should be visible from the skeleton (reliability [20]).This last property is

desirable for virtual colonoscopy applications. Furthermore, the skeleton computation process

should be robust and insensitive to small perturbations/noise on the boundary or to rotations of

the object, efficient to compute, reversible, so that the original object can be reconstructed from

the skeleton and hierarchical, i.e., allows different hierarchies or level-of-detail skeletons

(multiscale [33]) to be computed where each hierarchical level is included in the next level.

Many of these properties are conflicting, for example an object cannot be accurately

reconstructed from a thin skeleton. The last property is an important one since a hierarchical

skeleton would allow different curve-skeletons to be computed using the same process. An

example of a hierarchical curve-skeleton is shown in Figure 1.

In this paper, we introduce the concept of a hierarchical curve-skeleton and present a method to

extract these curve-skeletons from a general 3D object. We also demonstrate how this technique

is applicable to all types of 3D objects: polygonal surface representations, volumetric datasets

and scattered point sets. Extensions to mesh decomposition and animation are also discussed.

The algorithm was applied to many 3D objects, some of which are shown in this paper (the

2

others can be seen on our web site [43]). The method is based upon using a repulsive force field

[2][12] and concepts from vector field topology [21] to extract families of curve-skeletons. The

method automatically detects “nodes” in the skeleton, which can be used as branch points for

virtual navigation [45] or as joints for animation [15][16][39][42].

2 Literature Review

There has been quite a lot of work in generating 2D medial-axes, 3D medial surfaces and 3D

curve-skeletons. In this paper, we are concerned with curve-skeleton generation from a 3D object

and limit our discussion to work most relevant to the approach described here (a full listing of

papers can also be found at [4][43]). A 3D object can be represented either as a set of bounding

polygons, scattered points on the surface of an object, or as a segmented volume. Different

techniques work on different types of objects.

In [38], a method to discretely determine the curve-skeleton of surface-like objects is given.

Voxels are classified as edge, inner, curve or junction using a mask, then removed and

reclassified until only curve voxels remain. No hierarchy is defined and joints are not identified.

Because it is discrete, the method is sensitive to noise on the boundary. A similar thinning

algorithm is given in [30]. In [40], a 2.5D algorithm is described which determines a 2D skeleton

for each slice of a 3D voxelized dataset and the results are then merged. This method has the

ability to produce level-of-detail skeletons by tweaking the parameters but it is not a strict

hierarchy and it breaks down for certain parameter values.

Many approaches are based on first computing the distance field or distance transform and then

attempting to thin, cluster and/or path search to find a centerline [15][16][20][29][42][45]

computing the gradient to help determine the “sink” direction [10][34]. These algorithms are

very sensitive to noise and hierarchy is not determined. Furthermore, the distance field is not an

ideal function for “box-like” objects.

Geometric algorithms are given by [3][26] where the Voronoi Diagram is used to help determine

the medial surface. Clustering and simplification must be used to get a curve-skeleton (which

was not the focus of these papers), and no hierarchy is identified.

In [41], a curve-skeleton for animation is computed from scattered points by computing a

neighborhood graph. The neighborhood graph is traversed from a user-selected source, and the

centers at each level form the curve-skeleton. The results vary depending upon the selection of

3

the source point and the resulting skeleton is not always centered. In [39], a geometric method is

presented which clusters the surface polygons (mesh decomposition) and then determines the IK

skeleton from the polygon clusters. Levels-of-detail can be generated by adjusting the size of the

polygonal surface clusters, however, the resulting skeletons will not be a strict hierarchy. In this

paper, we show how the hierarchical curve-skeleton can be used to decompose the polygon mesh

(the inverse of [39]).

Another set of methods attempts to compute some continuous quench function over the object

and detect the extremes of that function (which should lie close or on the centerline of the

object). These methods include those that use a type of field [1][2][10][12][18][25][27], radial-

basis function [28] and intensity maxima [5][6][32]. Most of the above papers do not discuss a

hierarchical approach to the curve-skeletonization problem. However, these methods are similar

to the approach taken here and are discussed in detail below.

In [2] and [12], 2D and 3D skeletonization algorithms based upon a generalized potential field

are presented. “Seed” points near the convex corners of the object are selected and the repulsive

force (gradient of the potential field) is analytically derived only along a path determined using a

force-following algorithm. Each path started at a seed point ends at a potential minimum

detected by a major change in the repulsive force vector direction. The resulting skeleton

segments are usually disconnected pieces and a separate re-connection step is necessary to assure

connectivity. No hierarchy is defined and only polygonal objects can be handled.

A similar approach is taken in [44]. The visible repulsive force defined there is a special case of

the repulsive force used in [2] and [12]: the Newtonian repulsive force. Additionally, the force is

computed using only a few samples on the boundary (the visible set) determined by the

intersection with a number of sampling rays originating at the current position on the path. The

resulting skeleton is not smooth and the identified joints are not robust. In [27], the same visible

repulsive force is used, but the force field is computed over the entire voxelized object. The

skeleton is extracted using a combination of thinning, clustering and graph searching algorithms

and it is unclear how these affect the final position of the identified joints.

3 Methodology

Without loss of generality, and to simplify the discussion in the remainder of the paper, we

assume that a 3D object refers to a 3D voxelized discretization of that object. Polygonal models

4

can be converted into volumetric objects by voxelization [14]. In Section 4.1, we also show how

the method is applicable to objects represented as scattered point sets.

The methodology presented here is an enhancement and extension of the methods presented in

[2][12][27][44]. We explicitly compute a repulsive force field over the entire object as in [27]

(not just along the path as in [2][12][44]). The resulting 3D dataset is a vector field: a 3D array

where each voxel contains a vector value (magnitude and direction). The difference from all the

previously discussed approaches is that once we compute this vector field, we use its topological

characteristics [13][17][21] such as critical points and low divergence points together with high

curvature points on the boundary, to extract our skeleton hierarchy.

The presented methodology has a number of significant advantages over the previous methods,

namely: it directly produces connected skeletons without the use of a re-connection step, it works

both on un-segmented objects (where only the boundary of the object is known) and segmented

objects (where the interior is known), it has the ability to produce a strict hierarchy of skeletons

and it has the ability to automatically extract an “IK skeleton” that can be used for animation i.e.,

the joints are automatically identified.

3.1 Repulsive Force Function

Our repulsive force is defined similarly to the repulsive force of the generalized potential field

[2][12]. The key idea behind the potential field approach is to generate a force field inside the

object by charging the object’s boundary. The basic procedure to compute the generalized

potential and force for polyhedral objects is summarized in [12]. Since our algorithm operates on

3D objects represented by voxels, our boundary elements are also voxels, and we consider them

to be point charges (this also simplifies the calculations involved in computing the force field). A

boundary point is defined as an object voxel that has an exterior (empty) neighbor. An interior

voxel (interior point) is an object voxel whose neighbors are all object voxels.

The repulsive force at a point due to a nearby point charge is defined as a force pushing the point

away from the charge with a strength that is inverse proportional to a power of the distance

between the point and the charge namely:

mPC R
CPF = (1)

5

where PCF is the repulsive force at point P, due to point charge C, CP is the normalized vector

from C to P which gives the direction of the force, R is the distance between P and the charge C

and the power m is called the order of the force function (m=2 for the Newtonian force).

The force at a point P due to the influence of multiple point charges can be found discretely by

simply summing all the forces at P.

∑=
i

PCP i
FF (2)

where PF is the resulting force at point P and
iPCF ’s are the forces due to the individual point

charges Ci.

We consider every boundary voxel to be a point charge and the repulsive force at each interior

voxel is explicitly computed by summing the influences of all the point charges. The resulting

vector field is also called a force field.

Figure 2: Repulsive force field of a 3D chess piece. The vectors at each point are shown with arrows. The middle

slice of the 3D object is shown in zoom.

A high order of the force function (m) will cause the local boundary points to have a higher

influence on a given interior point than the more distant boundary voxels, thus creating a vector

field with sharper path-lines because it follows the local boundary topology more closely. A low

value for the m parameter will produce a smoother vector field, with more rounded corners, since

the vector direction at a particular point is now influenced by more boundary charges [2]. Figure

2 shows the repulsive force field along a center slice of a 3D chess piece.

Because the algorithm uses all of the boundary points for force computation, visibility errors can

result for objects with tapered limbs (like a comb) since individual points within each prong of

the comb cannot “see” boundary points on the other prongs and those points should not be

considered in the force field calculation [12][2]. This can be overcome by determining the

6

visibility with a line-of-sight calculation, which checks to see that the surface is not pierced when

connecting a point to a charge with a straight line. While this is more accurate, it unfortunately

increases the running time substantially and is only applicable if the surface is known. Using a

high order of m also minimizes this effect [2] by reducing the influence of more distant boundary

charges.

The computational complexity of the force field calculation depends on the number of object and

boundary voxels: where No is the number of object voxels and Nb is the number of

boundary voxels. Since Nb is a fraction of No, the computational complexity is approximately

O(No

)(NbNoO ×

2). This is the most time consuming step of the algorithm, accounting for about 98% of the

total running time.

3.2 Computing the Curve-Skeleton

Given a 3D vector field, certain concepts from vector field visualization can be used to identify

three different types of “seed points” in the vector field. The seeds are the starting point of “field-

lines” or “stream-lines” (these lines are found by “force-following”) which define our curve-

skeleton segments.

3.2.1 Critical points and the “core skeleton”

Critical points are important vector field topology components and are often used in vector field

visualization. These are the points where the magnitude of the force vector vanishes. In Figure 2,

a critical point is visible in the middle of the head of the chess piece. In [13][17][21][31], a full

discussion of the visualization of vector-field topology and the different types of critical points

can be found. In what follows, we present a brief description relevant to extracting the curve-

skeleton.

Critical points are difficult to locate in a vector field, particularly because they do not necessarily

occur at the given sample locations, but often occur in between sampling points. A good

heuristic for detecting critical points is described in [17]: a zero in the vector field occurs when

all 3 components of the force vector (x, y and z) vanish, thus, if we can identify a region where

each vector component changes sign, the region is a candidate for containing a critical point. In

our case, the smallest region we can consider is a voxel cell; the force field value is evaluated at

each of the 8 corners of a grid cell using tri-linear interpolation. Cells containing both positive

7

and negative values for every vector component (x, y and z) are potential candidates for

containing critical points. Candidate cells are recursively divided into 8 sub-cells and the

candidacy test is repeated for each sub-cell. The process ends either when a cell fails the

candidacy test or when the cell is too small, and still a candidate, in which case a critical point is

assumed to exist at the center of the cell.

Once extracted, the critical points are classified. Different types of critical points can be

identified [13][17][31] including: attracting nodes (where all vectors are pointing towards the

critical point), repelling nodes (where all the vectors are pointing away from the critical point)

and saddle points (where some vectors are pointing towards the critical point and others away

from it). Critical points can be classified by evaluating the real and imaginary components of the

eigenvalues of the Jacobian matrix of the vector-field at the critical point: a positive real part of

an eigenvalue denotes the existence of a repelling direction (given by the corresponding

eigenvector), a negative real part denotes an attracting direction, and an imaginary part describes

a spiraling motion around the point. If all the real eigenvalues are of the same sign, the critical

point is classified as an attracting (if negative) or repelling (if positive) node. The critical point is

said to be a saddle if two real eigenvalues have the same sign and the third one has an opposite

sign. Saddles are a special type of critical points for the purpose of extracting the curve-skeleton

from a 3D object. Saddle points will occur between attracting or repelling nodes directing the

flow towards one or another and can be used to connect them. Intuitively, the outward flow

directed away from a saddle point, can only reach an attracting node or another saddle inside the

object since the vector field was generated by the closed boundary of the object and points

towards the interior.

Path-lines are “seeded” from saddles in the direction of the eigenvectors corresponding to the

positive eigenvalues, which indicate the outward flow. Next, a path-line force-following

algorithm is applied which stops at another critical point or when it arrives at a previously visited

location. The force-following algorithm evaluates the force value at each point along a path and

moves in the force direction with small steps. Samples taken along the integration path started at

a saddle point form a skeleton segment. Skeleton segments connecting all the critical points of

the force field are known as critical-curves [21] and form the core skeleton.

8

The core skeleton represents level 0 in the skeleton hierarchy. However, the core skeleton

contains only part of the central curve-skeleton for a given object. The next level-of-detail is

added by considering another important feature of the force field: the divergence.

3.2.2 Low divergence points and the “level 1 skeleton hierarchy”

The divergence of a vector field in a given region of space is a scalar quantity that characterizes

the rate of flow leaving that region. Divergence is an interesting property because it measures the

“sinkness” of a point [10]. A negative divergence value at a point indicates that the flow is

moving mainly towards the given point. Divergence can be computed at a grid point using the

formula:

z
F

y
F

x
FFdivF zyx

∂
∂

+
∂

∂
+

∂
∂

=⋅∇=

where Fx, Fy, Fz are the force field components in the x, y and z direction. Of interest are points

with low divergence values, which indicate a “sink”. Either a “local min” or a threshold can be

used to identify new seed points (note that the user can determine using these values how many

new seed points are identified). From each of these new seed points, a new field-line is

generated. These field-lines will connect to the core skeleton. By varying the divergence

threshold the user varies the number of seed points selected and correspondingly the number of

new skeleton segments, generating an entire hierarchy of skeletons that we call the level 1

skeleton. In Figure 1(b) the core skeleton of the cow is shown. In (c) and (d) varying thresholds

values are applied to extract the divergence seeds. Different thresholds can be chosen based upon

the application of the curve-skeleton.

3.2.3 High Curvature points and the level 2 skeleton hierarchy

Another set of seed points for skeletal segments consists of the convex corners of the object.

These will create paths from the boundary to the skeleton as in [2] and generate the “tendrils”

found in medial axis representations. For objects without convex corners, such as curved objects,

the curvature on the boundary can be computed [19] and areas of high curvature (threshold) can

be used to seed new path-lines. Local curvature maxima could also be used to determine

boundary seeds. A disadvantage of boundary seeding based on the curvature is that it is affected

even by small amounts of noise present on the object’s boundary. A possible solution to this

9

problem is to consider an extended neighborhood when computing the curvature at boundary

voxels, not just the face, edge and vertex neighbors [19]. For certain applications, such as virtual

navigation, boundary seeds could be used differently, i.e., to specifically generate certain

navigation paths. All the boundary-seeded curves connect with the core skeleton.

The skeleton segments originated at seed points on the boundary will create another level of

hierarchy for each curve-skeleton computed thus far. Each of the level-1 skeletons will form the

root of a new hierarchy developed by varying the number of boundary-seeded segments (via the

user specified curvature threshold). We call this new hierarchy level the level 2 skeleton

hierarchy.

Figure 3: A 3D model of the letter K with varying curve-skeletons. (a) 3D model, (b) core skeleton using only

critical points, (c) adding low divergence values (top 20%), (d) adding boundary seeds at high curvature boundary
locations.

3.3 The Algorithm

The algorithm can be summarized in five steps as follows:

Step 1. Identify the boundary voxels of the 3D object as the source of the repulsive force

field. If 3D polyhedral objects are used, they can be discretized onto a 3D grid by voxelization.

Step 2. Compute the repulsive force function at each object voxel. The function specification

is given in Section 3.1. After computation, a 3D vector-field results.

Step 3. Detect the critical points of the vector field and connect them using path-lines by

integrating over the vector-field. The method is described in Section 3.2.1 and produces the core

skeleton.

Step 4. Compute the divergence of the vector-field at each voxel. Points with low divergence

values are selected as new seeds for new skeleton segments. Varying the divergence threshold

(given as a percentage, i.e., the top 20%) creates the level 1 hierarchy after the core skeleton.

10

Step 5. Compute the curvature at every boundary voxel and select new seed points based on

a user-supplied curvature threshold, given again as a percentage of the highest curvature value in

the dataset (i.e. top 30%). This adds another level of hierarchy to the core and divergence

skeletons, the level 2 skeleton hierarchy. Note that the boundary seeds can be added either

directly to the core skeleton or to a level 1 skeleton. However, a strict hierarchy is achieved only

if the hierarchy levels below the current level are fixed: for example, in order to generate a strict

level 2 hierarchy, the core skeleton and the number of divergence seeds must be fixed and only

the number of boundary seeds is allowed to vary. The curve-skeleton extraction algorithm

described here is general, and can also be used to extract a curve-skeleton from other types of

quench functions such as [1][18][27][28].

3.4 Skeleton representations

The skeleton produced by the algorithm consists of a set of seed points connected by points

sampled by the force-following algorithm. Alternatively, each curve sample can be mapped to

the nearest grid location, creating a less smooth voxel skeleton, consistent with the discretized

nature of the original 3D object. Figure 4(a) shows the curve representation and 4(c) shows the

corresponding voxel skeleton of a cow model.

Another approach, useful for animation [16][42] or matching [37], is to transform the skeleton

into straight-line segments by treating the critical points and the points where different skeleton

segments meet as “joints” and connecting these points with straight lines. The resulting skeleton

will be suitable for importing into commercial animation packages (Maya, 3D Studio Max, etc)

since the joints are automatically detected (joints are the end-points of skeleton segments). In the

discussion section we show how the “skinning” process (attaching surface polygons to the

skeleton) can also be done automatically using the repulsive force field. Figure 4(d) shows the

IK-skeleton for the cow.

Figure 4: Skeleton representations for the cow model (a): curve skeleton (b), voxel skeleton (c) and straight-line

skeleton (d).

11

4 Results and Discussion

The algorithm was tested on many different volumetric datasets containing various 3D objects

both volumetric and voxelized polygonal objects. In Figure 5, the core skeleton and a

divergence-based skeleton (using the top 20% of divergence values) of a few sample objects are

shown. More objects can be seen at [43].

The divergence and the curvature thresholds should be chosen based on the application of the

resulting skeleton. There are no optimal values for these parameters, as different applications

may require skeletons of different complexity. The simplest skeleton our algorithm can extract is

the core skeleton, using no divergence or curvature seeds. If a more complex skeleton is desired,

the user can increase the number of divergence seeds, or the number of curvature seeds or both,

keeping in mind that curvature seeds are very sensitive to noise on the boundary of the object.

The order of the repulsive force function (m) has a dominant role in the skeleton outcome. It

shapes the vector field, determining the location of critical points and divergence seeds. While

the force function is object dependent, experimental results showed that a high order (m>5)

produced stable results. The results shown in Figure 5 used m=6.

Figure 5: Some 3D objects and their skeletons. The first column shows the core skeleton, the second shows the

skeleton with 20% of the low divergence points.

12

Resolution/discretization is an important external factor affecting the performance of the

algorithm and changing the accuracy of the solution, especially for scattered point sets. Clearly a

43 grid will yield a less accurate result than a 603 grid. For the results in this paper (Figure 5), the

voxelized datasets are all less than 703, except for the colon (Figure 5(f)) and angio (Figure 5(g))

datasets, which were on the order of 2003 (these were original voxel datasets). A 1 or 2 voxels

thick object region will not have enough resolution to properly compute the repulsive force field

in that region (this is a common simulation issue and standard mutiresolution solutions can be

employed [7]). For such regions, the repulsive force field is extremely sensitive to even small

boundary perturbations, resulting in discontinuities of the flow pattern inside the object’s

boundaries. As a result, the interior skeleton can become disconnected just because the force-

following algorithm becomes stuck in these perturbed regions of the force field. To overcome

this problem, one can either increase the resolution of the voxelization or pad the object with a

number of extra layers of voxels (dilation), making the object thicker. Padding produces a

smoothing effect of the object’s boundary, which makes it suitable for noisy objects, but can also

merge object features that are very close to each other.

The time to determine the skeleton is dominated by the repulsive force field computation. It

ranged from about one minute for most of the datasets to about a half an hour for the colon

dataset (Figure 5(f)) (on a standard PC). The computational complexity of the repulsive force

field is O(n2) (see Section 3.1). Speedup of the computation can be achieved by sampling the

boundary (i.e., using only a fraction of the boundary points for force field generation) or by using

a less accurate distance computation in place of Euclidean distance.

Currently, the entire force field is computed and stored in memory. Although the memory

requirement is linear in the size of the original volume, for massive datasets, where the size of

the vector field can easily reach gigabytes, out-of-core solutions need to be investigated.

4.1 Scattered Point Sets

For objects from scattered point sets where the surface is not known (such as from scanners) the

skeletonization algorithm described here can still be used. Although a discrete grid is needed for

the computation of the repulsive force field, it is not necessary to know what is inside vs. outside

the object or to have the exact boundary of the object specified. Only a set of surface points is

13

necessary to compute the vector field. The sample points are mapped to a grid (Eulerian

approach [26]) and the force field is computed on the entire grid (inside and outside the object,

since these distinctions are not known a-priori). The curve-skeleton is then determined using the

described algorithm. Many curve-skeletons will result: the correct interior one, which will be

connected, and a number of exterior skeletons, which will hit the boundary of the grid and can be

removed [26]. In Figure 6 we show the core and level-1 skeletons for a horse dataset represented

by scattered points on the surface. If the sample points on the object’s surface are not dense

enough, critical points (saddles) will occur between the sample points. These critical points are

artificially created by the sampling process and should not be considered as part of the core

skeleton. They can be removed by imposing a minimum distance constraint between a critical

point and a surface sample.

Figure 6: Curve-skeleton from scattered points: (a) scattered point set, (b) “core” skeleton. (c) skeleton inside (in

black) and outside the object (in gray) using top 20% divergence points as seeds. (d) “inside-only” skeleton obtained
from (c) by removing skeleton segments touching the bounding box.

4.2 Hierarchical Mesh Decomposition

The computed skeleton can also be used to generate a hierarchical mesh decomposition as in

[39], taking advantage of the fact that we can differentiate between different segments of the

skeleton. Starting from every boundary point of the object and following the field-lines with the

same force-following algorithm used to extract the skeleton, we can attach each boundary point

to the first skeleton segment encountered during the force-following process. Figure 7(b) shows

the boundary decomposition of a cow model. The method generates a decomposition of the

volumetric object into logical parts (component-wise differentiation), corresponding to the

skeleton segments and it is similar to the “skinning” process of an animation character, where the

surface polygons are attached to the skeleton segments manually.

14

Figure 7: Skeleton for animation and object decomposition. (a) Cow IK skeleton; each segment in a different color

(b) object decomposition (points on the boundary are color coded by their associated skeletal segment).

The resulting skeleton is very suitable to animation tasks. The algorithm can produce straight-

line skeletons and automatically identify the joints as the critical points or the points where two

skeleton segments meet. In the case of a polygonal model, each surface polygon will be attached

to one or more skeleton segments by tracing the field-lines starting at each of the polygon’s

vertices. If all vertices are attached to the same segment, the entire polygon is assigned to that

segment and if vertices are assigned to different segments, a weight is assigned to each segment

based on distance or other factors for a smoother animation.

The extracted curve-skeleton has many of the desirable properties described in the introduction.

The force-following algorithm used to discover new skeleton segments guarantees that the

skeleton is one-voxel thick. Homotopy however is not guaranteed and in fact can be

compromised by inadequate resolution, producing disconnected skeletons even for connected

objects. A post processing step could be used to connect the disjoint parts. Centeredness is also

not guaranteed since each interior voxels is influenced by all boundary voxels even if they are

not visible from that point. If visibility of a boundary point from the interior voxel is taken into

account, then the resulting skeleton is more centered. Given the adequate resolution, connectivity

of the core skeleton is guaranteed by the topology of the repulsive force field. It can be shown

that between every pair of neighboring attracting nodes (where the force following stops), there

must be a saddle point (because the force vector must change sign as we move from one

attracting node to the other). These saddles are the seeds of our core skeleton and the skeleton

segments seeded there will connect the attracting nodes. Connectivity of the level 1 and level 2

skeletons is guaranteed because the force following algorithm stops only when reaching a

previously visited location. Component-wise differentiation was demonstrated above by object

decomposition. Reliability (seeing all the boundary points from the skeleton) is a post-process

and it can be checked using the methods described in [20]. The algorithm is robust to noise on

15

the object’s boundary because a central core is detected. In Figure 8(d), the skeleton of a 3D

object with noise is shown. The levels of hierarchy will be different for the object with noise and

without but this can be controlled by varying the threshold used for the divergence values or by

padding the object. Quantitative comparisons of the skeleton can be made by either comparing

critical points and/or the entire path lines.

Figure 8: Object (a) and skeleton (b). Object with artificially added noise (c) and corresponding skeleton (d).

Although the algorithm presented here is not as fast as the distance field-based approaches, the

resulting curve-skeleton is much cleaner. Reconstruction of the original object is generally not

possible from curve-skeletons because they retain only the core of the original shape.

5 Conclusions

In this paper, we have presented a robust algorithm to extract the curve-skeleton from any 3D

object, polygonal, voxel or scattered point set. It is based upon computing a repulsive force field

and using vector-field topology to extract a family of hierarchical curve-skeletons. The curve-

skeleton hierarchy that results from the method described can be tailored to many different

applications including virtual navigation, animation, and matching.

16

Acknowledgements

We gratefully acknowledge the support of the National Science Foundation (ITR 0118760) and

(ITR 0082634). We would like to thank J. Dwoskin for the implementation of the voxelization

code.

The algorithm was implemented in C++ and can be downloaded from [43]. The online program

takes as input a small number of parameters: the order of the repulsive force function m, a

divergence threshold and a growth factor. The growth factor is used to overcome resolution

problems as described above.

References

1. Abdel-Hamid G, Yang Y (1994) Multiresolution Skeletonization: An Electrostatic Field-Based Approach. Proc. IEEE
International Conference on Image Processing (1): 949-953.

2. Ahuja N, Chuang J-H (1997) Shape Representation Using a Generalized Potential Field Model. IEEE Trans. Pattern
Analysis and Machine Intelligence, 19(2):169-176.

3. Amenta N, Choi S, Kolluri R-K (2001) The Power Crust. Proc. of 6th ACM Symp. on Solid Modeling, pp 249-260.
4. Medial Axis/Surface Transform Website http://www.cs.princeton.edu/~min/meshclass/.
5. Aylward S-R, Jomier J, Weeks S, Bullitt E (2003) Registration and Analysis of Vascular Images. International Journal of

Computer Vision, 55 (2-3): 123 - 138.
6. Aylward S-R, Bullitt E (2002) Initialization, Noise, Singularities, and Scale in Height Ridge Traversal for Tubular Object

Centerline Extraction. IEEE Trans. Medical Imaging 21(2): 61-75.
7. Berger M, Oliger J (1984) Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations. Journal of

Computational Physics, 53:484-512.
8. Bloomenthal J (2002) Medial Based Vertex Deformation. Proc. ACM SIGGRAPH/Eurographics Symposium On Computer

Animation, pp 147-151.
9. Blum H (1967) A Transformation for Extraction New Descriptors of Shape. Models for the Perception of Speech and Visual

Form, MIT Press, pp 362-380.
10. Bouix S, Siddiqi K (2000) Divergence-Based Medial Surfaces. Proc. European Conf. on Computer Vision, pp. 603-618.
11. Brennecke A, Isenberg T (2004) 3D Shape Matching Using Skeleton Graphs. Simulation und Visualisierung (SimVis), SCS

European Publishing House, Erlangen, San Diego, pp 299-310.
12. Chuang J-H, Tsai C, Ko M-C (2000) Skeletonization of Three-Dimensional Object Using Generalized Potential Field. IEEE

Trans. Pattern Analysis and Machine Intelligence, 22(11):1241-1251.
13. Dickinson R-R (1991) Interactive Analysis of the Topology of 4D Vector Fields. IBM Journal of Research and

Development, 35(1/2):59-66.
14. Fang S, Chen H (2000) Hardware Accelerated Voxelization. Computers and Graphics, 24(3):433-442.
15. Gagvani N, Silver D (1999) Parameter Controlled Volume Thinning. Graphical Models and Image Processing, 61(3):149-

164.
16. Gagvani N, Silver D (2001) Animating Volumetric Models. Graphical Models, 63(6):443-458.
17. Globus A, Levit C, Lasinski T (1991) A Tool for Visualizing the Topology of Three-Dimensional Vector Fields. Proc. IEEE

Visualization, pp 33-40.
18. Grigorishin T, Yang Y-H (1998) Skeletonization: An Electrostatic Field-Based Approach. Pattern Analysis and

Applications, 1:163-177.
19. Hameiri E, Shimshoni I (2002) Estimating the Principal Curvatures and the Darboux Frame from Read 3D Range Data. 1st

International Symposium on 3D Data Processing Visualization and Transmission, pp. 258-267.
20. He T, Hong L, Chen D, Liang Z (2001) Reliable Path for Virtual Endoscopy: Ensuring Complete Examination of Human

Organs. IEEE Trans. Visualization and ComputerGraphics, 7(4):333-342.
21. Helman J-L, Hesselink L (1991) Visualizing Vector Field Topology in Fluid Flows. IEEE Computer Graphics and

Applications, 11(3):36-46.
22. Kanitsar A, Fleischmann D, Wegenkittl R, Felkel P, Gröller M-E (2002) CPR: Curved Planar Reformation. Proc. IEEE

Visualization, pp 37-44.

17

23. Kanitsar A, Wegenkittl R, Fleischmann D, Grőller M-E (2003) Advanced Curved Planar Reformation: Flattening of
Vascular Structures. Proc. IEEE Visualization, pp 43-50.

24. Kong T-Y, Rosenfeld A (1989) Digital topology: Introduction and survey. Computer Vision, Graphics, and Image
Processing, 48(3):357-393.

25. Leymarie F, Levine M (1992) Simulating the Grassfire Transform using and Active Contour Model. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 14(1):56-75.

26. Leymarie F (2003) 3D Shape Representation via the Shock Scaffold. Ph.D. Thesis, Brown University, Providence, USA.
27. Liu P, Wu F, Ma W, Liang R, Ouhyoung M (2003) Automatic Animation Skeleton Construction Using Repulsive Force

Field, Proc. IEEE 11th Pacific Conference on Computer Graphics and Applications, pp 409.
28. Ma W, Wu F, Ouhyoung M (2003) Skeleton Extraction of 3D Objects with Radial Basis Functions. Proc. Shape Modeling

International, pp 207-215.
29. Manzanera A, Bernard T, Preteux F, Longuet B (1999) Medial faces from a concise 3D thinning algorithm, Proc. IEEE

International Conference on Computer Vision, pp 337-343.
30. Palagyi K, Kuba A (1999) Directional 3D Thinning using 8 Subiterations. Proc. Discrete Geometry for Computer Imagery,

Lecture Notes in Computer Science 1568:325-336.
31. Perry A-E, Chong M-S (1987) A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts. Ann.

Review of Fluid Mechanics, 19:125-155.
32. Pizer S-M, Fritsch D-S, Yushkevich P-A, Johnson V-E, Chaney E-L (1999) Segmentation, Registration, and Measurement

of Shape Variation via Image Object Shape. IEEE Trans. Medical Imaging, 18(10):851-865.
33. Pizer S, Siddiqi K, Szekely G, Damon J, Zucker S (2003) Multiscale Medial Loci and Their Property. International Journal

of Computer Vision 55(2-3):155-179.
34. Schirmacher H, Zockler M, Stalling D, Hege H (1998) Boundary Surface Shrinking - A Continuous Approach to 3D Center

Line Extraction. Proc. Image and Multidimensional Digital Signal Processing, pp 25-28.
35. Sebastian T, Klein P, Kimia B (2002) Shock-Based Indexing into Large Shape Databases. Proc. European Conference on

Computer Vision, 3:731-746.
36. 3D Studio Max (3DSMax), Discreet, www.discreet.com.
37. Sundar H, Silver D, Gagvani N, Dickinson S (2003) Skeleton Based Shape Matching and Retrieval. Shape Modeling and

Applications, pp 130-138.
38. Svensson S, Nystrom I, Sanniti di Baja G (2002) Curve Skeletonization of Surface-like Objects in 3D Images Guided by

Voxel Classification. Pattern Recognition Letters, 23 (12):1419-1426.
39. Tal A, Katz S (2003) Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts. ACM Trans. on Graphics,

22(3):954-961.
40. Telea A, Vilanova A (2003) A Robust Level-Set Algorithm for Centerline Extraction. Eurographics/IEEE/TCVG Symp. on

Visualization, pp 185-194.
41. Verroust A, Lazarus F (2000) Extracting Skeletal Curves from 3D Scattered Data. The Visual Computer, 16(1):15-25.
42. Wade L, Parent R-E (2002) Automated Generation of Control Skeletons for Use in Animation. The Visual Computer, 18:97-

110.
43. Vizlab Website, Rutgers, The State University of New Jersey: http://www.caip.rutgers.edu/vizlab_group_files/vizlab.html.
44. Wu F-C, Ma W-C, Liou P-C, Liang R-H, Ouhyoung M (2003) Skeleton Extraction of 3D Objects with Visible Repulsive

Force. Computer Graphics Workshop 2003, Hua-Lien, Taiwan.
45. Zhou Y, Kaufman A, Toga A-W (1998) Three-dimensional Skeleton and Centerline Generation Based on an Approximate

Minimum Distance Field. The Visual Computer, 14:303-314.

18

http://www.discreet.com/
http://www.caip.rutgers.edu/vizlab.html

