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ABSTRACT 
Curve-skeletons are a 1D subset of the medial surface of a 3D 
object and are useful for many visualization tasks including 
virtual navigation, reduced-model formulation, visualization 
improvement, mesh repair, animation, etc. There are many 
algorithms in the literature describing extraction methodologies 
for different applications; however, it is unclear how general and 
robust they are. In this paper, we provide an overview of many 
curve-skeleton applications and compile a set of desired 
properties of such representations. We also give a taxonomy of 
methods and analyze the advantages and drawbacks of each class 
of algorithms.  

 
CR Categories and Subject Descriptors: I.3.5 [Computer 

Graphics]: Computational Geometry and Object Modeling -- 
Curve, surface, solid, and object representations; I.4.10 [Image 
Processing and Computer Vision]: Image Representation 

Additional Keywords: skeleton, curve-skeleton. 

1 INTRODUCTION 
3D models are common in many disciplines ranging from 
computer aided design, medical imaging, computer graphics, 
scientific visualization, computational fluid dynamics, and remote 
sensing. While the 3D representation is invaluable, many 
applications require alternate “compact” representations of these 
models. One such representation is a line-like or stick-like 1D 
representation which is sometimes referred to as a “skeletal 
representation” or “curve-skeleton” [84]. This is different from 
the skeletal-surface representation (medial surface). This type of 
representation captures the essential topology of the underlying 
object in an easy to understand and very compact form. Examples 
of applications which use a curve-skeleton include virtual 
navigation, registration, animation, morphing, scientific analysis, 
recognition, and retrieval. 

One of the difficulties is that a “curve-skeleton” is an ill-defined 
object. This has led to a large number of algorithms and heuristics 
in the literature and many more constantly being proposed. On 
most of the visualization discussion boards, there are periodic 
requests for such techniques. Many of the algorithms in the 
literature use different definitions, parameters and thresholds and 
test the algorithm on a limited number of diverse 3D objects. 
Additionally, some are fine-tuned for a specific application. 
Understandably, many of these algorithms can not be replicated 
and most major visualization packages do not use them. It is hard 
to decide which algorithm to implement since there are no criteria 
for evaluation, thereby causing a further proliferation of new 
algorithms. What is needed is an analysis of the desired properties 
of the curve-skeleton as required by the various applications and 
an overview of the existing methods. 
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In this paper, we compiled a list of properties for curve-

skeletons based upon numerous applications.  We also categorized 
many of the existing algorithms into classes based upon 
implementation, and we discuss how these classes achieve the 
various properties. In addition, one algorithm from each class has 
been implemented and tested on the same set of 6 3D shapes. The 
results are shown in Section 6. Our goal in this paper is to provide 
an overview of curve-skeletonization applications and 
implementations to help guide visualization users and developers. 

2 DEFINITIONS 
In 2D, the medial axis of a shape is defined as the locus of the 
centers of maximal inscribed discs [14], in other words, in the 
continuous case it is the locus of points which are equidistant 
from at least two points on the boundary of the object. The medial 
axis of a 2D shape consists of a set of curves. In 3D, however, the 
problem becomes more complicated. Here we talk about a medial 
surface, defined in terms of the centers of maximal inscribed 
balls, which in addition to a set of curves can also contain surface 
patches. Figure 1 shows the medial axis for a 2D shape (a 
rectangle) and the medial surface of a 3D shape (a box). Note that 
in Figure 1(b) only the horizontal patch of the medial surface is 
shaded, but in fact the medial surface consists of nine different 
patches determined by the lines drawn in red and the edges of the 
box. The medial axis (2D) and the medial surface (3D) are also 
known as the skeleton.  

A definition of the medial surface can be formulated as follows 
[45]: let X  R3 be a 3D object. A ball of radius r centered at x ⊂
∈  X is defined as Sr(x) = {y ∈  R3, d(x, y) ≤ r}, where d(x, y) 
is the distance between two points x and y in R3. A ball Sr(x)  
X is maximal if it is not completely included in any other ball 
included in X. The medial surface is then the set of centers of all 
maximal balls included in X. A more illustrative definition of the 
skeleton is given by the grass-fire analogy [14], where the 
boundary of an object made entirely of dry grass is set on fire and 
the skeleton consists of the loci where the fire fronts meet and 
quench each other.  The process of obtaining a skeleton is called 
skeletonization. 
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Figure 1. The medial axis in 2D (a and c) and the medial surface in 
3D (b) and a few examples of inscribed discs (2D) and ball (3D).  

If the medial surface is augmented at each point with the radius 
of the maximal ball centered at that point, a complete and accurate 
reconstruction of the original object is possible from the medial 
surface alone, by growing balls [14][32]. This property has an 
immediate application in shape compression and volume 
animation [32].  



A major disadvantage of the medial surface (axis) is its intrinsic 
sensitivity to small changes in the object’s surface due to the way 
it is defined [22]. An illustrative example in 2D is shown in 
Figure 1(c) where it can be observed how a small change in the 
object’s shape can generate a large change in the medial axis.  

In many applications however, a concise representation of 3D 
objects with curve arcs or straight lines is desirable because of its 
simplicity. For example animation traditionally uses an IK 
(inverse-kinematics) skeleton consisting of a small number of 
connected line segments representing the torso, arms and legs, for 
example. Other applications, such as virtual navigation, also 
require a set of curve paths for traversal. This line-like 
representation of a 3D object is also known as the centerline or 
the curve-skeleton [84] and is a simplified 1D representation of its 
medial surface, consisting only of curves. Figure 2 shows curve-
skeletons of several 3D objects.  

 
 
 
 
 
 
 
 

Figure 2. Examples of curve-skeletons of different 3D objects 

2.1 The Discrete Case 
The above definitions were formulated in continuous space. 
However, many of the applications which need skeletonization 
have discrete 3D datasets, such as those acquired using medical 
scanners. In discrete space, the definitions are analogous to the 
continuous case. However, problems may occur because of 
discretization. For example a maximal ball may touch the discrete 
boundary of an object in a single point. As a result, in order to 
include all centers of maximal balls, the discrete skeleton may be 
more than one image element (pixel or voxel) thick. Furthermore, 
resolution can cause a loss of detail for certain objects. 

Some skeletonization algorithms work on geometric data 
(continuous), others deal with discrete objects only (distance field, 
thinning). In this paper, we will consider mainly the discrete case, 
but for the sake of completeness we will also include references to 
geometric methods. Geometric data can be voxelized [80], and 
similarly, voxelized data can be polygonized [55]. 

3 CURVE-SKELETON PROPERTIES 
Below we describe the desirable properties of the curve-skeleton 
as required by the various applications (see Section 4): 
homotopic, invariant under isometric transformations, 
reconstruction, thin, centered, reliable, component-wise 
differentiation, robust, efficient to compute, and hierarchic. 

For the following discussion, we will consider the discrete 3D 
case unless otherwise specified. We will use Sk(O) to denote the 
curve-skeleton of a 3D object O. 

Homotopic (topology preserving): There are various definitions 
of topology preserving (see [45][52][72]). Two objects have the 
same topology if they have the same number of connected 
components, tunnels and cavities [45]. A cavity is a background 
(white) connected component surrounded by an object (black) 
component (an empty space inside the object). As pointed out in 
[45], the above formulation applied to two objects O1 and O2: 
“object O2 preserves the topology of object O1” is meaningful 
only if an additional constraint is added: object O2 is obtained 
from O1 by only removing object voxels (no adding). Otherwise, 
object O2 could end-up having a completely new configuration, 

but still have the same topology (for example O2 may grow limbs 
where O1 did not have them). With this observation, the above 
definition of topology preserving is meaningful in the context of 
skeletonization, where the skeleton S is a subset of the original 
object O. Algorithms to compute the number of connected 
components, tunnels and cavities in an object are given in [72] 
and [85]. 

Of course, we cannot have cavities in a 1D curve, so in a strict 
sense, a curve-skeleton cannot preserve the topology of an object 
with cavities. To accommodate objects with cavities, we propose 
a relaxed definition of topology preserving: the curve-skeleton 
should have at least one loop around each cavity of the original 
object. Think of a hollow sphere: the curve-skeleton can be just a 
circle – a single loop – or many circles in different orientations 
but all surrounding the same cavity. The latter version may better 
convey the true shape of the original object. However, tunnels in 
the original object also create loops in the curve-skeleton. Thus, 
we will reformulate the relaxed definition as follows: the curve-
skeleton S preserves the topology of the original object O if it has 
the same number of connected components and at least as many 
loops as tunnels and cavities in the original object. Of course if 
the object does not have any tunnels or cavities, the skeleton 
should have no loops at all. The number of loops in a curve-
skeleton can be determined by performing a depth-first search on 
the skeleton. 

An important issue in topology preservation is the definition of 
connectivity. Two adjacent voxels x and y are 6-connected if they 
share a face, 18-connected if they share a face or an edge and 26-
connected if they share a face, an edge or a vertex. An n-path is a 
sequence of voxels x1 … xk with xi n-adjacent to xi+1, where n is 6, 
18 or 26. A n-connected component is then a set of voxels such 
that any two such voxels are connected by an n-path included in 
that component. In order to avoid topological paradoxes such as 
objects being both connected and disconnected [45], different 
connectivities must be chosen for the object and for the 
background. Common choices are (26,6) and (18, 6), where the 
first number in a pair represents the object connectivity and the 
second represents the background connectivity. 

Invariant under isometric transformations: Given an 
isometric transformation T, the skeleton of the transformed object 
T(O), denoted by Sk(T(O)), should be the same as the transformed 
skeleton of the original object. Formally, the invariance criterion 
is given by: T(Sk(O)) = Sk(T(O)). 

Reconstruction [31][62] refers to the ability to recover the 
original object from the curve-skeleton. The reconstruction 
operation involves growing balls centered at each skeleton point 
(or discrete medial axis point). The radius of each ball is given by 
the “distance transform value” which specifies the distance to the 
closest point on the boundary of the object. If we denote the 
reconstruction operation by Rec(skeleton), then accurate 
reconstruction means that Rec(Sk(O)) = O. 

In general, accurate reconstruction is not possible from the 
curve-skeleton alone since it is only a subset of the medial 
surface. To test the degree of reconstruction possible from a given 
curve-skeleton, every point must be equipped with the distance 
transform value determined in the original object. Then, the 
difference volume O–Rec(Sk(O)) will provide a quantifiable 
measure of the ability to reconstruct the object. 

Thin: Curve-skeletons should be one-dimensional, that is at 
most one voxel thick in all directions, except at joints where the 
skeleton might become thicker to ensure connectivity between the 
different branches. 

We can distinguish three types of curve-skeleton points: regular 
points on a 1D curve-arc that have exactly two neighbors, end-
points of a curve that have exactly one neighbor, and junction 
points (where curves meet) which can have three or more 



neighbors. The thinness property can be easily checked if the 
junction points are known in advance. Some curve-skeletonization 
methods directly identify junction points [23][50]. If junction 
points are not known in advance, they have to be identified with 
another method. 

Thinness and reconstruction are two conflicting properties. 
Even for objects whose medial surface actually contains only 
curves (like tubular objects), a one-voxel thick curve-skeleton 
may not contain all the necessary maximal balls to accurately 
reconstruct the object (remember that a discrete skeleton is 
usually more than one voxel thick owing to the discrete nature of 
the object). 

Centered: One important characteristic of a skeleton is its 
centeredness within the object. This is especially true for 
scientific applications where the “core” of an object is desired. 
Clearly the curve-skeleton should lie on the medial surface of the 
object, but this criterion alone does not guarantee centeredness. 
One possible way to quantify the centeredness of a curve-skeleton 
is to seed a number of uniformly distributed radial rays at each 
skeleton point and measure the distance to the boundary along 
each of these rays. 

Reliable: This property is useful for virtual navigation. 
Reliability [38] refers to the property of the curve-skeleton that 
every boundary point is visible from at least one curve-skeleton 
location. In other words, for any boundary point, there exists a 
straight line connecting it to a curve-skeleton point that does not 
cross any boundary. The term reliable is used in relation to virtual 
endoscopy where it ensures that the interior organ surface is fully 
(reliably) examined by the physician performing the virtual 
procedure. A straight-forward algorithm to test the reliability of 
the curve-skeleton checks the visibility of each boundary point 
with a straight line to every skeleton point. Boundary points 
which cannot be connected without intersecting the surface are 
not visible. Efficient visibility computation can be done following 
the solutions from [38]. 

Junction Detection and Component-wise Differentiation: 
The curve-skeleton should be able to distinguish the different 
components of the original object, reflecting its part/component 
structure. This says that the logical components of the object 
should have a one-to-one correspondence with the logical 
components of the curve-skeleton (which are curve arcs). There is 
no rigorous definition of logical components of a 3D shape, 
although several attempts have been made. For example in [86], 
meaningful components are defined as components that can be 
perceptually distinguished from the remaining object. In [44], the 
component structure of a 2D shape is defined using a combination 
of substance and connection measures computed around junction 
points of the medial axis using “visual conductance”. As long as 
the curve-skeleton has identifiable joints or junction points, a 
partitioning of the original object can be performed to produce a 
one-to-one correspondence between the different components in 
the object and the skeleton (for use in animation or mesh 
decomposition).  

Component-wise differentiation is different from homotopy in 
that the first one deals with logical perceptual components of a 
single connected object while the latter is concerned with 
geometrical connected components forming different objects.  

Connected: This is a consequence of homotopy. If the skeleton 
corresponds to a single connected object, then by maintaining the 
topology of that original object the skeleton would have to consist 
of a single connected component itself.  

Robust: As shown in Figure 1(c), the medial axis is very 
sensitive to noise. A desirable property of the curve-skeleton is to 
exhibit weak sensitivity to noise on the boundary of the object, 
that is, the curve-skeletons of a noise-free object and the same 
object with noise should be similar. 

There are another three criteria that relate to the algorithm used 
to compute the skeleton. Clearly, the algorithm should be 
efficient, i.e. many applications need real-time computations.  
Because the curve-skeleton is an approximation of the complex 
components of an object, the skeletonization process should 
reflect the natural hierarchy of these complexities [25][43]. A 
hierarchical approach is useful because it can generate a set of 
skeletons of different complexities that could be used in many 
different applications. Furthermore, some algorithms can handle 
point sets (i.e., where the connectivity is not specified and there is 
no inside/outside information), not just a voxelized representation. 

Not all properties described above are essential to all types of 
applications. Furthermore, some of the properties may be 
conflicting, such as discussed for thinness and reconstruction.  As 
a result, various algorithms that extract curve-skeletons usually 
enforce only a subset of these properties, depending on the 
application. 

4 USES OF CURVE-SKELETONS IN VISUALIZATION  
Since they were first introduced, curve-skeletons have found uses 
in many areas of image processing and visualization. Below we 
present some of these applications. Many others exist. 

One of the first uses of the curve-skeleton was in virtual 
navigation [66][92], exploiting its centeredness property to 
generate collision-free paths through a scene or through an object. 
Given a scene composed of 3D objects, the curve-skeleton of the 
background gives a collision-free path through the scene. In 
virtual endoscopy, curve-skeletons are used to specify collision 
free paths for navigation through human organs. Traditional 
endoscopic methods are invasive and often uncomfortable to 
patients. A virtual endoscopy system can produce images similar 
to those obtained using the traditional technique but in a non-
invasive way. After imaging, the organ is “skeletonized” and a 
virtual camera is translated along this skeleton path allowing the 
inspection of the respective organ. Clinical applications include 
colonoscopy [40] [now available from GE, Viatronix, Philips, 
Siemens], bronchoscopy [66], angioscopy [8] and others. A 
reliable navigation path ensures the interior organ surface can be 
fully examined by the physician performing the virtual procedure 
[38][92]. 

In traditional computer graphics, skeletons are used 
extensively to specify animation [1][12][60]. These skeletons are 
sometimes referred to as IK-skeletons and they control the 
polygonal representation of the character being animated. Surface 
polygons are attached to and manipulated through this simple 
stick-like figure. While most of the IK-skeletons are specified by 
an animator, recently, there have been methods to compute the 
skeleton and the “skinning” (polygon correspondence) 
automatically [13][53][86][91]. A simplification of the curve-
skeleton can be successfully used as an IK skeleton, by replacing 
curve arcs with straight lines. Volumetric objects can also be 
animated and manipulated using the same type of paradigm [32].  

Surgical planning and radiation treatment require accurate 
extraction (segmentation) and quantification of specific 
anatomical structures from CT (computed tomography), MRI 
(magnetic resonance imaging), MRA (magnetic resonance 
angiogram) or ultrasound data. This is especially true for blood 
vessels and nerve structures. Since these structures have a 
characteristic tubular shape, methods aimed specifically at 
extracting the centerline of such tubular objects from medical 
images have been developed [5][6][28][29] using field-specific 
knowledge (intensity variation of the blood vessels, connectivity). 
The centerline can also be used to aid in other image processing 
operations such as edge detection and segmentation [67][68]. 
Other uses include curved planar reformation (flattening) 
[41][42], detection of stenosis [63][79], aneurisms or vessel wall  



calcifications [81], deforming volumes: unwinding convoluted 
objects to allow a more efficient inspection of the overall structure 
or to remove occlusion  (e.g., colon straightening  [78]). 

A common operation in medical imaging is the registration of 
two images from the same patient taken with different modalities 
(MRI, CT, MRA). Registration is performed by aligning some 
structures that are visible in both images. One approach is to 
reduce the dimensionality of the problem by extracting the 
skeleton of the structure from both images and then aligning the 
skeletons [6][30][67]. 

Another application is matching of 3D objects: given a query 
object, the task is to find similar or identical objects in a database 
by using the curve-skeleton [19][24][39][82]. If the curve-
skeleton can differentiate the part structure of the original object, 
part matching is also possible, where only parts of the objects are 
matched against the query. In addition to matching, it directly 
provides registration of the part in the whole object [24][82].  

Shape metamorphosis (morphing) is the process of generating 
smooth transitions between two shapes, creating the impression 
that one object is being smoothly transformed into another. One of 
the most difficult tasks in generating a successful morph is 
determining the correspondences between the two shapes used to 
drive the interpolation process. Various trade-offs are made 
between allowing the user full control over the process (and 
turning it into a mostly manual process) and completely 
automating the correspondence finding algorithm. The curve-
skeleton can be used in this context for its simplicity, allowing the 
user to quickly specify correspondences on the skeletons or 
enabling matching algorithms to find correspondences more 
efficiently. Additionally, the interpolation process can be 
performed directly on the skeleton [11][47][95]. 

Decomposing a polygonal mesh into components is desirable 
for applications which treat objects as a sum of components. Such 
a decomposition can be assisted by using the curve-skeleton if it 
has the ability to distinguish the components of the original object 
[20][51]. In [43] an inverse approach is taken, where a 1D 
skeleton is extracted using the mesh decomposition results. 
Related geometric uses of skeletons include surface 
reconstruction [3][89] and mesh repair [50]. 

In [83], the curve-skeleton is used to define a “skeletal 
dimensional reduction” for the CAD field. It is also shown how 
such a representation can be used to reduce boundary value 
problems over complex solids to lower-dimensional problems 
over the skeleton. Skeletons have also been used to improve the 
efficiency of collision detection of volumetric objects [33] or in 
surgical simulations [93] and as a general data structure for 
graphical objects [69]. One of the biggest uses of skeletons is in 
analysis of scientific data where complex topologies can be 
easily explained using line-like drawings.  Furthermore, skeletons 
can be used for reduced modeling and to explain simple physical 
phenomena. Examples include plume visualization [74], vortex 
core extraction [7], feature tracking [90] and many others. 

The previous discussion is by no means exhaustive, but gives a 
sample of popular uses of skeletons in visualization. There are 
many other examples as well. Some applications have extra data 
available to help in the curve-skeletonization process such as 
velocity fields in the case of vortex core extraction [7] or blood 
flow data in the case of vessel tracking (e.g., [5][6][28]), while 
others use only the 3D object. In this paper, we concentrate on the 
more general problem where extra information is not available. 

5 ALGORITHM CLASSES 
There are many different skeletonization algorithms for both 2D 
and 3D. Although some of the 2D algorithms reportedly scale to 
3D, we restrict our discussion to algorithms explicitly designed 
for 3D. The discussion below reviews general 3D curve-

skeletonization algorithms, i.e. the generation of a 1D curve-like 
representation from a 3D object. However, for completeness we 
do include some medial surface algorithms since these medial 
surfaces could be further reduced to a curve-skeleton [84]. Unless 
otherwise stated, we consider the 3D objects to be represented by 
voxels on a regular grid.  

A commonly used classification scheme present in the literature 
divides the skeletonization algorithms into the following classes 
[57][87]: topological thinning (grassfire propagation), distance 
transform based (ridge detection) and  Voronoi diagram based. 
However, many of the surveyed methods that produce curve-
skeletons use pieces from several classes listed above to obtain a 
curve-skeleton. For example, there are thinning algorithms which 
use the distance field information to determine the thinning order, 
or some distance field methods which use thinning to prune the 
skeleton. Instead, we categorize the algorithms based on the 
underlying implementation into the following classes: (1) pure 
thinning and boundary propagation (2) distance field based (3) 
geometric and (4) general-field functions.  

5.1 Thinning and Boundary Propagation 
Thinning methods attempt to produce a curve-skeleton by 
iteratively removing simple points from the boundary of the 
object. A simple point [9][45][46] is an object point which can be 
removed without changing the topology of the object (see [45] for 
a complete review of digital topology). The process starts from 
the object’s boundary and continues inward until no more simple 
points can be removed. At every iteration, each boundary voxel is 
tested against a set of topology preserving conditions and possibly 
removed. The conditions are usually implemented as templates (or 
masks), of size 3x3x3 or larger. Additional conditions are used to 
prevent removal of surface or curve endpoints in order to 
maintain the geometrical properties of the object. Directional 
thinning methods remove voxels only from one particular 
direction in each pass (for example, North, South, Up, Down) 
using different numbers of directions and conditions to identify 
endpoints [9][20][36][48][54][64][65][71][88]. Because of this, 
these methods are sensitive to the order in which the different 
directions are processed and the resulting skeletons may not be 
centered within the object. Fully parallel [27][56][59] and non-
directional thinning methods [16][83] do not have this 
disadvantage. Some thinning methods produce a surface-skeleton 
in the first stage and continue to thin until a one voxel wide 
skeleton is obtained [16]; others directly produce a curve-
skeleton. Most thinning algorithms are designed and proven 
correct for a specific connectivity.  

5.2 Using a Distance Field 
The distance transform or distance field is defined for each 
interior point P of a 3D object O as the smallest distance from that 
point to the boundary B(O) of the object: 

)),((min)(
)(
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= , where d is some distance metric. 

Various distance functions can be used such as the Euclidean 
distance or an approximation such as the <3,4,5> chamfer metric 
[15]. A distance field can also be approximated using fast 
marching methods [76][87]. 

Ridges in this distance field correspond to voxels that are 
locally centered within the object. Most of the methods in this 
class attempt to find these voxels. These act as potential 
candidates (from the larger pool of object voxels) for curve-
skeleton points. The candidates must then be somehow “pruned” 
or thinned to produce a 1D skeleton. The resulting values are then 
connected using a path connection or minimum spanning tree 
approach [82][92][96]. Therefore, most of the algorithms have 



three steps: 1. find ridge points (local maxima, saddles), 2. prune 
and 3. connect. Other methods explicitly maintain the 
connectivity by combining steps 2 and 3. Methods used to find 
candidate voxels include: distance ordered thinning [26][31][32] 
[70], gradient searching [10], divergence computation [17], 
geodesic front propagation [66], thresholding the bisector angle 
[58] or shrinking the surface along the gradient of the distance 
field [75]. In voxel coding approaches, the distance field is 
combined with a distance-from-a-source field to generate a 
skeleton [97]. 

After obtaining candidate values from the original volume, 
these points are clustered and connected. For connectivity, most 
use minimum spanning trees, shortest paths [38][91] or other 
graph algorithms. In [96] an “LMpath” defines the connectivity of 
local maxima clusters. An alternative is provided by the fixed 
topology skeleton which is a set of a fixed number of connected 
active contours driven by the underlying distance field [35]. 

The distance field method can accurately extract the medial 
surface; however they cannot extract a curve-skeleton from 
arbitrary objects without employing additional techniques to 
prune the medial surface. For example, for the box in Figure 1(b), 
the voxels along the center plane (shaded) all have the same 
distance field value. Therefore, some sort of pruning must be used 
to simplify it into a line. 

The main advantage of these methods is that computation of the 
distance field is very fast and it is usually needed by the 
application. Furthermore, for tubular objects, the distance field 
approach works very well. 

5.3 Geometric methods 
Geometric methods usually apply to objects represented by 
polygonal meshes or scattered point sets in continuous space. 

A popular approach is to use the Voronoi diagram [18] 
generated by the vertices of the 3D polygonal representation or 
directly by a set of unorganized points [3][4][61]. The Voronoi 
diagram represents a subdivision of the space into regions that are 
closer to a generator element (a mesh vertex in the case of a 3D 
model) than to any other such element. The internal edges and 
faces of the Voronoi diagram can be used to extract the skeleton 
of the shape. 

Cores and M-reps [21][69] are also medial-axis/surface 
approaches. A core is a locus in a space whose coordinates are 
position, radius, and associated orientations. The location of the 
core represents the middle of the figure and the spread of the core 
represents the width of the figure. M-reps are a generalization of 
the Core concept. The M-rep models the medial surface using a 
“web” of connected atoms. Each atom describes the position, 
width, local figural frame which implies the figural directions, and 
an object angle between opposing, corresponding positions on the 
implied boundary.  

A similar structure is the shock scaffold, which relies on the 
concept of contact spheres [49][50] and represents the medial 
axis/surface by a set of shock curves, defined as the intersection 
of medial surface sheets (not the curve-skeleton). 

The methods described above can be labeled as medial-
axis/surface based. The main disadvantage of medial-axis based 
geometric methods is their sensitivity to noise. For example, 
Amenta's power shape [3] contains a large number of unwanted 
branches that need to be pruned to extract a simple skeleton [4]. 
Additionally, these methods are more computationally intensive 
than the thinning/distance field based methods. 

There are other geometric methods that avoid the medial axis 
altogether. One approach is based on computing level sets of a 
geodesic graph and then extracting a skeleton by connecting the 
centers of adjacent levels [89]. The resulting skeleton is not 
unique for a given object, being dependent on the location of the 

source point used to construct the geodesic graph. Li et al. [51] 
construct a line segment skeleton by collapsing edges in length 
order (shortest first). This method is sensitive to the mesh 
tessellation. Katz and Tal [43] first decompose a mesh surface 
into segments using clustering, and then use this segmentation to 
construct a skeleton (each clustering can be represented by a 
centered vertex). But if the input mesh is not 2-manifold, the 
results may be unpredictable. 

5.4 General-Field Functions 
Various types of fields generated by functions other than the 
distance transform can also be used to extract curve-skeletons. 
Included in this class are potential field function [2][23][25] 
where the potential at a point interior to the object is determined 
as a sum of potentials generated by point charges on the boundary 
of the object; electrostatic field function [37]; visible repulsive 
force function [94]; radial basis function [57]. The skeleton points 
are found by determining the “sinks” of the field and connecting 
them using a force following algorithm [25] or minimizing the 
energy of an active contour [57]. 

The main advantage of these functions over the distance field is 
that they can produce nice curves on medial sheets where the 
distance field is constant. This is because they take into account 
larger boundary areas, not just the distance to the closest point on 
the boundary. This also creates an averaging effect that makes 
these algorithms less sensitive to boundary noise. However, they 
are much more expensive to compute. 

Resolution of the voxel grid also affects the field functions 
which tend to be more sensitive to noise in thin regions of the 
object because significant contributions toward the final field 
value at an interior point come from fewer boundary voxels.  

6 DISCUSSION 
In this section, we discuss the described curve-skeletonization 
methods in terms of the properties presented in Section 3. 

Homotopy is explicitly checked only by the thinning methods 
while removing points. The geometric methods based on the 
Voronoi diagram also preserve the topology. None of the other 
methods provide any guarantees regarding homotopy.  

Invariant under isometric transformations: Directional 
thinning methods are sensitive to the object orientation and thus 
are not invariant under transformation. The other methods are. 

Reconstruction: It should be obvious that regardless of the 
method used to compute it, a complete accurate reconstruction of 
the original object is not possible from the information retained in 
a curve-skeleton alone, except for certain objects (cylindrical 
objects for example). But clearly, a denser curve-skeleton will 
generate a better reconstruction [31]. 

Thinness (1D) is an implicit property of the general-field 
methods which use force-following or active contours to generate 
1D skeleton branches. Thinning algorithms can also directly 
produce a curve-skeleton or further thin the surface-skeleton to a 
1D representation. However, both algorithms are resolution 
dependent. Distance field methods and geometric methods do not 
produce a 1D representation directly. Therefore, both require 
significant post-processing. 

Centeredness is achieved in the first steps by the methods using 
a distance field, however, once clustering and spanning trees are 
used, centeredness may be lost (for example [91]). The geometric 
methods can better achieve centeredness since contact points are 
directly computed [50] and can be incorporated more easily into 
the pruning steps. However, Voronoi-based methods are 
dependent on the sampling rate of the object’s surface: a dense 
sampling produces a more centered skeleton [3]. Thinning and 
general field methods do not guarantee centeredness (for example, 



for directional thinning this would depend on the order of the 
directions).  

Reliability must be checked for all of the classes. It is unclear 
which of the methods produces the most reliable skeleton (i.e., 
without adding more points to the initial skeleton). 

Junction Detection and Component-wise Differentiation:   
Potential field methods and some thinning algorithms that 
specifically identify joints have the ability to distinguish the 
different components of the skeleton and determine a 
corresponding part structure of the original object. The other 
methods must test for joints after significant pruning and 
clustering [91]. The joints placement in these cases is very 
sensitive to slight changes in the object. 

Connectivity is usually checked by all the algorithms to ensure 
at least a minimal degree of homotopy with the original object. 
Some algorithms (e.g., thinning) explicitly maintain connectivity 
during computation, while other methods check and enforce 
connectivity in a post-processing step. 

Robust: Thinning, distance field and geometric methods are 
sensitive to noise, generating unnecessary branches in the skeleton 
as a result and methods have been proposed to filter the resulting 
skeletons [4][26]. The general field approaches are less 
susceptible to noise because of the large amount of averaging 
included in the underlying computation. Field based methods are 
more sensitive to resolution because thin regions in the objects 
can cause numerical instabilities in the computations. 

Many of the algorithms described in the literature are usually 
illustrated with only a few examples and are not tested on a large 
database of general 3D objects, like [77]. Thus it is unclear how 
robust and general these algorithms are with respect to the choice 
of their parameters.   

Efficiency: The Euclidean distance field of a 3D object can be 
computed in linear time using the algorithm of Saito and Toriwaki 
[73]. The subsequent steps of filtering and reconnecting the 
skeleton may, however, have a higher complexity but they usually 
operate on a greatly reduced set of voxels. Thinning is also a 
linear process in the number of object voxels. Computation of the 
Voronoi diagram of a set of n points in 3D is O(n2) in the worst 
case [3]. The complexity of potential field computation is 
O(n2)[25], where n is the number of object voxels. 

6.1 Implementation 
In section 5, four classes for the curve-skeletonization algorithms 
are given. The classes are divided into a “core” part and then a 
“post-core” step which is necessary to prune, cluster, connect or 
smooth the skeleton. In this section, we describe the results of 
comparing one algorithm from each class on 6 objects including 
one “real” object (a colon dataset) and one object with noise (the 
chess piece). Because many of the algorithms described in the 
literature are difficult to implement (typically not all of the details 
are given such as specific thresholds, epsilon values and cluster 
parameters), we have only implemented the “core” part of the 
algorithms.    

From the methods using a distance field, we implemented the 
parameter controlled filtering of the distance function described 
by Gagvani and Silver [31]. From the thinning class, we 
implemented the 12-subiteration curve thinning algorithm 
described by Palágyi and Kuba in [65]. To represent the geometric 
methods, we used Amenta’s implementation of the power shape 
(a Voronoi diagram based medial axis) [3]. Finally, we used our 
implementation of the potential field method described in [25].  

The purpose of this comparison is to get a sense of what each 
method-type can offer in terms of extracting a curve skeleton. 
Clearly this is not a fair comparison of the various algorithms in 
the different classes, since typically additional pre- and/or post-
processing steps are performed that improve the results 

significantly. It does, however, convey a sense of how much 
additional processing may be required to extract a curve-skeleton. 

The results on a small set of test objects are shown in Figure 3.  
Note that for the power shape algorithm, only the surface voxels 
were given as input to the program and the results shown in the 
figure are the inside poles determined by the algorithm [3]. In the 
case of the potential field method, we show only the core skeleton 
generated by connecting the critical points of the vector field [25] 
(i.e., the “extra branches” have to be added).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Skeletons of various objects. Only the “core” of each 
class of methods was implemented. 

From these results, it is clear that if one is interested in a thin 
skeleton, the potential field method yields the thinnest and 
cleanest skeleton at the initial stage. The distance field and the 
geometric methods do not generate a curve-skeleton directly and 
the resulting skeleton points need to be pruned and then connected 
to obtain a curve-skeleton. Thinning produces a connected curve 
but the curve needs to be smoothed and, as can be seen, is 
sensitive to noise. In terms of running time, the potential field 
method is the slowest. In Figure 4 we show a comparison of the 
running times (in milliseconds, on a logarithmic scale) recorded 
for each method as a function of the total number of object voxels. 
(note that no optimizations were done for the implementations.)   
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Figure 4. Running time (log scale) vs. number of object voxels. 

7 SUMMARY 
There have been many different curve-skeletonization algorithms 
given in the literature. In this paper, we have summarized the 



visualization applications that use curve-skeletons and have 
distilled the list of skeleton properties necessary for these 
applications. We have then classified the algorithms for 
computing the curve-skeleton based upon their implementations 
and have discussed how each methodology achieves the different 
skeleton properties, using an implementation of the “core” of each 
class. 
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