FASTER RECONSTRUCTION ALGORITHM FOR
VOLUME ANIMATION

BY KUNDAN SEN

A thesis submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of
Professor Deborah Silver

and approved by

New Brunswick, New Jersey

October, 2001

ABSTRACT OF THE THESIS

Faster Reconstruction Algorithm for Volume Animation

by Kundan Sen

Thesis Director: Professor Deborah Silver

Volume graphics refers to the branch of computer graphics that deals with the realm
of volumes, or 3-dimensional objects, such as the data produced from MRI, CT and ultra-
sound imaging. The objective of volume animation is deforming such datasets to produce
a sequence of datasets that imbibe into it the sense of motion.

Unlike conventional computer graphics, the realm of volume animation is still in the
development phase. This thesis describes the volume animation pipeline developed mostly
in Vizlab. Two important stages of the pipeline are discussed in detail - the reconstruction
process and the generation of a proper color mapping chart - which were developed and

enhanced as a part of this thesis.

ii

Acknowledgements

I would like to thank my research advisor, Prof. Deborah Silver, for her guidance and
support throughout my study as a graduate student. My special thanks are due to Nikhil
Gagvani, Arindam Bhattacharya, and Tilottama Roy for their useful suggestions to my
work. Last but not the least, I would like to acknowledge my colleagues at Vizlab and

friends at Rutgers for their love and support during my studies.

iii

Table of Contents

Abstract L e ii
Acknowledgements Lo L iii
List of Tables e viii
List of Figures ix
1. Introduction 1
1.1. Motivation 1
1.2. Previous Work L 2
1.3. Overview of Material 4

2. The Volume Animation Pipeline. 5
2.1. Creating the Volume 6
2.2. Skeletonization Lo 7
2.3. Connecting the Skeleton 8
2.4. Adding Motion Capture e 9
2.5. Post-Motion Capture Steps L 00 10
2.6. Reconstruction L 11
2.6.1. Sampled Reconstruction o o000 11

2.7. File Formats 12
2.8. Use of the Volume Animation Pipeline 13

3. Enhancements to the Pipeline 26
3.1. Faster Reconstruction 26
3.1.1. Current Approach o0 26

iv

3.1.2. Disadvantages of the Approach 28

3.1.3. New Reconstruction Algorithm 29

3.1.4. Scan-Filling a Sphere Using Double Bresenham’s Algorithm 30

3.1.5. Parametric Equations to Reduce Matrix Multiplication 32

3.1.6. Faster Relaxation Rule 32

3.1.7. Code Level Optimizations 33

3.1.8. Timing and Profiling: Results of the Optimizations 33

4. Additional Functionality L. 36
4.1. Creating the Colormap 36
4.2. Sorting the Colormap 37
4.3. Segmentation. 40
4.4. Reconstruction Modes Lo Lo 41
4.4.1. Binary Reconstruction o oL, 41

4.4.2. HotSpot Reconstruction 42

4.4.3. Mottled Reconstruction 0L, 42

4.4.4. Sampled Reconstructiono oL 42

5. Results e 49
5.1. Execution Time Improvements 49
5.2. Example 1: The Visible Human Dataset 50
5.3. Example 2: The Colon Dataset 51
5.4. Example 3: The Sample Cube Volume 52
5.4.1. Testing Aliasing Effects 53

5.4.2. Anti-Aliasing by a Gaussian Kernel 53

6. Conclusions and Future work 64
Appendix A. User Manual 65
Al. AddHeader.sh 65
A2, AddSkel2Vol L 65

A3. AlphaFactor 66

A4, Bob ..o 66
A5, combineToBinaryVol.sh oo oo o 66
A.6. connect2identitytskelo oL 67
AT, connect2tskel Lo L 67
A8. Convert2Binary 68
A9, convertall.sh. 68
A10.Count 69
A11.CropVolume L 70
Al2euclidskel 70
AT3Fill . . L 71
Ad4FillSection L e 71
A5 FitVolumeo 72
AT6MIp . . . L e 72
Al7float2uchar L 73
A18.GenerateHeader 74
Al9.getskel L 74
A.20.getVoxelCount 74
A21Tcol . . . L e 75
A .22 InterpolateAlphao 75
A23InvCMap 76
A24ivbbox 76
A25idvskeladjust Lo 76
A26meltMan L e 77
A27TMergeMaps L e e e 78
A28 Merger e e 78
A29multiVolumeMelt Lo 79
A30.NewSort 80
A31.0neVolume L 80

vi

A32.Peek e 81

AB3polyr . . L e 81
A34.Pokeo 81
A35.Reconstruct] L. 82
A36.ReconstructEuclid Lo oo 83
A37remapVolume L 84
A38.ReverseData L 84
A39rmhdr 84
A.40.Skeleton.tel 85
A4l Skelselect 86

A 41.1.Selecting the Articulate Skeleton 87

A 41.2.Selecting the Root Node 88

A 41.3.Selecting the Skeleton Points to Join the Selected Root Node. 89

A2 8ortTskel 90
Ad3teleportMan L L e 91
A44TiffTolfl o e 91
A45.TightBounds 91
Ad6. Toolbar.tcl 92
Ad7 View.tel . . . oL 93
A48 VoI2Vitk e 93
A.49.VolumeSuperDiff oL 94
AB0.Vtk2Vol e 94
ADBLZap e 95
Appendix B. Troubleshooting 96
References e 100

vii

2.1.

2.2.

3.1.

5.1.

5.2.

List of Tables

Comparison of Reconstruction Accuracy With Identity Transform 12
Comparison of Reconstruction Accuracy With Framel2 of Jump Sequence . 12
Code Profiling: Comparison of Various Algorithms and Optimizations . .. 35
Properties of the Colon Dataset 52
Properties of the Aliascube Dataset 53

viii

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

3.1.

4.1.

4.2.

4.3.

4.4.

4.5.

5.1.

5.2.

5.3.

5.4.

List of Figures

The Volume Animation Pipeline
The Skeleton Points, Shown Inside the Surface Hull of the Visible Human
Volume, in 3 Different Thinness Values- 1.8,1.5,and 1.3
Root Nodes Selected In The Proper Order, Skelselect Started Up With The
Skeleton Points And The Bone Skeleton, Partially Connected Skeleton . . .
Final Connectivity Information Shown At 3 Different Thinness Values Using
Skelselect oL
Partial Connection of a Foot Node in Skelselect
Inventor Files Converted From The Motion Capture Dxf Files
Sequence After Extracting The Articulated Skeleton Points
Sequence After Connecting Skeleton Points And Reconstructing Spheres . .
Splatter of The Various Forms of Post-Animation Representation
The Volume Animation Pipeline
Scan-filling One Line from Another, Using Parametric Equations
The Volume Animation Pipeline
Butchershop.gif - Showing Range of Colors in the Dataset
The Original Colormap Extracted from butchershop.gif
Colormap Sorted by Gradient with Penalty. Note the Discontinuities.

Final Results from newSort L oo,
Reconstruction Times for the Left Leg of the Visible Human
Reconstruction Times for the Sample Cube Dataset
Reconstruction Times for the Half-Sized Visible Human

Average Speedup with the New Reconstruction Program

ix

18

19

20

21

22

23

23

23

24

25

32

44

45

46

47

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

Al
A2,

Cumulative Speedups Obtained by the Various Optimizations to the Recon-

struction Program L L o 53
Visible Human Dataset, a Frame From the Jog Sequence 54
Visible Human Dataset, with Hands Stretched Outwards 55
Visible Human Dataset, a Frame from the Wave Sequence 56
Internal Details in Visible Human Animation Volumes 57
The Dataset, as Obtained, After Removing Blank Envelope 58
Surface of the Colon Dataset, Extracted After Segmentation. 58
Articulated Skeleton and a Few Skeleton Points of the Colon 59
Final Connectivity Information of the Colon Skeleton 60
The Colon Dataset, After Uncoiling with the Animation Pipeline 60
Cut-away View of the Uncoiled Colon 61

Cube Volume to Test Aliasing Results, Viewed from Front Top Right. Volume

size is 128x128x128 L 61
Euclidean Skeletons of the Aliascube, at Thinness Levels of 1.50, 1.35 and 1.10 61
The Transformed Reconstruction of the Sample Cube 62
Slices from the Transformed Reconstruction of the Sample Cube Dataset . . 62
Slices in the Y-Z Planes, different X-values, from the Cube Reconstruction,

Using Smoothing Kernel of 1 (No Smoothing), 3,and 5 62

Subsections of Figure 5.20, Magnified 8 Times. Note that Some of the Minor

Artifacts Were Caused by the Magnificationinxv 63
Skeleton.tcl - User Interface for the Old Volume Animation Pipeline 86
Toolbar.tcl - User Interface for Volume to tiff Converter 92

Chapter 1

Introduction

The goal of computer graphics is to produce ‘realistic images’ using a computer, i.e. create
a synthetic model, ‘render’ that model, and somtimes simulate the environment around
that model. Animation is the art of producing dymanic images. Animators take synthetic
‘computer models’ and move them around, creating ‘animations’ or movies.

Volume graphics refers to the branch of computer graphics that deals with the realm of
volumes, or 3-dimensional objects. Unlike conventional computer graphics, which generally
limits itself to surface or ‘polygonal’ models of 3-dimensional objects, volume graphics deals
with an entire 3D object, the outside and the inside. Examples of volume models include
datasets from MRI, CT, and ultrasound imaging. Animating these models, i.e. volume

animation, is the focus of this thesis.

1.1 Motivation

Volume animation follows the mainstream computer graphics animation pipeline and in-
cludes modeling, manipulation and rendering. Modeling refers to the process of creating
the data and the design of adequate data structures to hold the data. Manipulation refers
to altering the model in order to instill into it the sense of motion. Rendering refers to the
process of taking in the manipulated data and creating the final 2-dimensional image out
of the information. Many 2D images can then be put into a movie format.

Conventional computer graphics has developed into a very standardized process where
every step exists as a well defined sub-process. However, the field of volume animation has
seen little work to date. There has been isolated work in one or more sub-processes yet
there is an absence of a well defined pipeline guiding the user through all the necessary steps

from aquiring a volume dataset to the final objective of producing a volumetric animation

sequence. The reasons for this include:

1. Dataset sizes are immense,

2. Fast rendering algorithms are relatively recent (1980’s), and

3. Sampling devices to collect the volume data are expensive.

In this thesis, we present the volume animation pipeline developed in the laboratory
for Visiomertics and Modeling at the CAIP Center. Our focus will be on one component,

reconstruction, and the enhancements to the algorithm for this component.

1.2 Previous Work

The goal of a volume animation pipeline is to generate a sequence of 2D images that show
motion of a 3D volume, starting from the dataset of the 3D volume and motion capture

sequences. As mentioned earlier, the goal can be broken down into the following steps:

¢ Modeling: create the 3D volume from 2D sliced data, and design appropriate data

structures
e Manipulation: Alter the data structure so as to exhibit a sense of motion

¢ Reconstruction and rendering: Re-generate the volume in the new deformed position

and render the final environment into a 2D image.

Although publications on an entire volume animation pipeline are not available, a lot of
work has been done on the individual steps that make up the pipeline. Some of the concepts

that are relevant to this thesis are described below:

¢ Octree Encoding [2] This work describes the octree data structure that is designed
for storing and working with volumes. Arbitrary 3-D objects can be represented to
the desired resolution in a hierarchial tree structure where each node has eight chil-
dren. The octree is particularly suitable for sparse volumes, but when the volume size
becomes huge, and is sufficiently filled, the memory requirement of this representa-
tion surpasses by far that of the array based approach. Moreover, the octree does not

provide as fast access to data in neighboring cells as the array approach.

¢ Marching cubes algorithm [4]: An isosurface is a collection of polygons that make
up the surface hull of a volume. The marching cubes algorithm is a key algorithm in
the generation of isosurfaces. The isosurface plays an important role in the modeling
phase - it’s by comparing this isosurface to the cloud of skeleton points that we can
make the best possible selection of points for the articulated skeleton. The articulated
skeleton is the basis for all the transformations that the volume has to undergo in the
motion sequence. The Marching Cubes algorithm allows us to build this isosurface
from a binary segmented dataset by converting each ‘cell’; comprising of a 2x2x2 grid
of adjacent voxels, that lies on the boundary of the sampled volume, into one or many

triangles that make the closest representation of the boundary.

¢ Skeletonization process [15][19] This work explains the research and development
involved in creation of the process of skeletonization that our volume animation
pipeline relies heavily on. Skeletonization, as defined by the work, is the process
of thinning a volume down to a number of key points with associated ‘weights’, or
‘Distance Transforms’. The quality of skeletonization, i.e. the density of the skeleton,
dominates in determining the accuracy of the reconstruction process. The articulate
skeleton, the stick figure to which the motion capture data is applied, is a subset of

these skeleton points.

¢ Volume Animation [16] [23] These publications describe in detail the pipeline de-
signed and implemented at our lab. The central idea of using a skeleton model to
perform volume animation is discussed. This work also lays down the basic theory of

reconstruction as applicable to our work.

¢ Collision detection [22] This paper illustrates the theory of collision detection based
on our skeleton model of volumes. The animations illustrated in this work have been

produced by the reconstruction process discussed and improved upon in this thesis.

¢ Reconstruction Filters [11] The research conducted by this group was aimed at
obtaining a density function that defines the entire volume, given a discrete set of
samples to start from. The definition of reconstruction, as used by the authors, is

the process capable of regenerating the volume by interpolating between the discrete

sample points. Note that this definition is different from our use of the term. The
authors discuss several filters that generate volumes with smoother sampling, such as
cubic, trilinear, pass-band, windowed sinc, and a host of others. Properties of good
filters, and possible errors in sampling, are discussed. This paper gave us the insight

to include basic smoothing kernels into our reconstruction process.

¢ Keyframe animation system [21] This work presents a keyframe animation system
where a 3-D world containing the volume of interest as well as its surrounding envi-
ronment is represented as a voxel model and is animated. By keyframe animation, the
authors refer to the process of creating an animation sequence by hand-crafting a few
frames that define the range of motion, and interpolating the rest of the frames. The
application developed, Sirpi (Sculpting Interface for Rapid Prototyplng), is a voxel
based approach to Computational Solid Geometry (CSG) sculpting. The authors have
shown implementation of basic volume sculpting tools, namely the cuboid, cylinder,
cone and sphere, and of arbitrary shaped tools formed by the use of one or more of the
fundamental tools on a volume, by use of Minkowski operators. They illustrate the
use of stack-of-bits approach and the reference count approach, which is somewhat
on the lines of our distance transform stencil approach, in determining the correct

sampling lookup for reconstruction of a particular voxel.

1.3 Overview of Material

This thesis continues with a description of the current working pipeline that was developed
in Vizlab. Chapter 2 describes the existing volume animation pipeline developed in Vizlab.
Chapter 3 describes the details of the major additions to the pipeline that were carried out
as a part of our research. Chapter 4 describes in detail some specific implementation issues
in the new pipeline. Chapter 5 presents some of the results of the improved pipeline.

A comprehensive user manual of all the utilities and programs developed and/or used
during this research has been provided in Appendix A. Some common troubleshooting hints

are mentioned in Appendix B, to help the new user get along with using our pipeline.

Chapter 2

The Volume Animation Pipeline

The volume animation pipeline developed in Vizlab has several steps that have to be carried
out in order to produce a successful and appealing animation sequence. Figure 2.1 shows

the flow diagram of the pipeline. The major stages of the pipeline are as follows:

¢ Pre-processing the dataset: The 3D Datasets we worked with were typically re-
ceived as a set of 2D images, each of which contain the data at a particular height
of the 3D object. In the first step of the pipeline, we process the dataset from its
raw format to the format suitable for our animation process, a ‘volume’. Any scaling
and/or filtering of the data is done here. The colormap for the volume is extracted

for sampled datasets.

¢ Skeletonization: The next step involves thinning the volume to reduce the voxel
count. Only the voxels that are most important to the shape are retained. A small
number of these points are then selected as the ‘bone skeleton’, a stick figure repre-

sentation of the shape of the volume.

e Connectivity: Every skeleton point in the cloud of points obtained above is con-
nected to a segment (‘bone’) of the bone skeleton. This is carried out such that when

a bone moves, the points attached to it move along with it.

e Animation: The bone skeleton is handed over to the animator, who uses conventional
animation packages like Maya to apply motion capture to our skeleton. Omnce the
motion has been applied, the animator exports the transformations that each segment
of the bone skeleton undergoes, in each frame of the animation. The bone skeleton,

after being given transformations for each frame, forms the ‘articulated skeleton’.

¢ Reconstruction: Now that we have the articulated skeleton, we pass the series of
skeletons to the reconstruction program, which generates a series of volumes that

represent the motion capture sequence.

¢ Rendering: In this last step of the volume animation pipeline, the series of new
volumes generated by the reconstruction program are rendered into 2D images. These

images are then made into a movie.

We shall now look into each of these stages, and sub-stages, in detail.

2.1 Creating the Volume

Volumetric datasets can be acquired in many ways, for example, from MRI, CT, and ultra-
sound imaging, or from a sculpting program, like Carpeaux [17].

One famous dataset is the visible human dataset, from the National Library of Medicine
[1]. This dataset will be used in this thesis as an example. The visible human dataset is
a set of 24-bit color tiff images, from cryogenic slices of a male. These images were at a
resolution of 1740x1012, with 1879 slices covering the height of the man, from head to foot.
These slices can be combined, by stacking up vertically, in order to create a 3D volume. For
the coordinate system we followed throughout our animations with this volume, the origin
was the top left front corner, the x-, y- and z- axes being left-to-right, front-to-back, and
top-to-bottom, respectively. Note that the ‘left’ of the volume, by convention, implies the
section of the volume to the left of the viewer, and not with respect to the position of the
visible man in the volume. In our case, the visible man is facing the viewer, so the left of
the volume is the right hand of the man.

It is clear from the size of the images that the volume that was created upon stacking
was roughly a cube, the width being comparable to the height. This is very unlike the
dimensions of a human body. This discrepancy arose because the sampling of the dataset
is much higher in x- and y- dimensions, i.e. within the cross sections, since these are high
resolution photographs of the slices. The slices themselves could not be made as thin as the

resolution along them, so the resolution in z-axis was limited to 1879. This meant that the

volume had to be re-sampled in x- and y-dimensions, in order to make it look like a human.

Because of the large size, we subsampled the dataset to a resolution of 580x337x1879.

2.2 Skeletonization

Skeletonization is a thinning process that reduces a volume to a simpler shape while pre-
serving the essential features of the original volume. The thinned version of the volume is
called the skeleton. Skeletonization of a binary-segmented dataset (containing only 0’s and
1’s) produces a cloud of points. Details of this process are mentioned in prior work carried
out in Vizlab, [16], [15], [19], and [23].

Each of these points has an associated radius (distance transform, DT) and thinness
value. If a sphere of radius equal to the DT is scan-filled at each skeleton point, the original
shape is retrieved. However, this process is lossy, and the accuracy is directly proportional
to the number of skeleton points, which in turn is determined by the thinness parameter
[15] in the skeletonization process. Details of the skeletonization program, ‘Skelselect’, are
discussed in chapter 4 of this thesis, and in [24].

A skeleton of a volume can be made very thin (lesser number of points) or very thick
(huge number of points). The thinner the skeleton, the less information it retains, and
so the poorer the reconstruction. The thinness parameter determines the thickness of the
skeleton.

Current skeletonization programs in Vizlab produce a skeleton of multiple resolutions,
allowing the user to choose how loss-less the process of skeletonization should be. Figure 2.2
shows how the surface model of the volume is matched up with the skeleton in order to
assist in selection of points for the bone skeleton. Figure 2.3 has 3 parts: (a) the display
after skelselect is loaded up with the skeleton points and the bone skeleton, (b) the bone
skeleton after the root traversal order has been selected, in the Select Root mode of the

tool, and (c) a partially connected skeleton.

2.3 Connecting the Skeleton

The points generated by the skeletonization program described in the previous section
are unconnected. For animation, a connected set of nodes is needed. Establishment of
a connection between the points helps us move groups of points together. For example,
in the visible human dataset, all the skeleton points of the hand have to move together,
since the hand is one single segment. For standard animation programs, like Maya or
Character Studio, ‘joint’ values must be chosen. Qur ‘bone skeleton’ translates to the joint
framework required by these programs. The joints are also placed in a hierarchy, so that
transformations of the joints higher up in the dependency graph are transferred to all the
joints that depend on them. In simpler terms, moving the shoulder would move the upper
arm, which in turn would cause the lower arm and the fingers to move along with it. The
combination of the joints and the hierarchy help us keep the skeleton connected, irrespective
of the transformations applied by the motion capture data.

The multiple level-of-detail skeleton, even at the lowest resolution, is too huge to be
worked upon in standard animation packages and add motion capture to. For this purpose,
we select a set of points that are crucial to defining movement in the skeleton and form an
‘bone skeleton’. For the visible human project, these points are chosen as the joints in the
body, in correspondence with the placement of sensors in the motion capture data we used
for the project. To ensure proper correspondence of the points and the joints in the body,
the cloud of skeleton points was placed within the isosurface hull of the visible man, using
skelselect.

Once the bone skeleton has been formed, each skeleton point in the multi-resolution
skeleton has to be connected to one and only one segment (‘bone’) of the skeleton. This is
also done using skelselect. An approximate automatic connectivity can be accomplished
by the minimal spanning tree algorithm, since each skeleton point should be connected to
the bone that is the nearest to it, so long as no boundary is crossed in the path from the
point to the bone. The automatic connectivity works fine for geometric objects, but for
complicated shapes like the visible man, division of the body is better done with visual

verification than by a minimal spanning tree method. The automatic method may be used

for obtaining a general connectivity, but areas where the bone skeleton forks - shoulders,
neck and pelvis - require visual fine-tuning for best results.

Our file handling convention names the bone skeleton as a ‘*.connections’ file, and the
final output of the skelselect program (containing the bones and a list of points correspond-
ing to each bone) as a ‘“*.xxx.connect’ file, xxx’s being filled in by the thinness value at
which the connections were saved.

The connection of the skeleton points to the articulated skeleton is a complicated, time-
consuming process. The segments of the articulated skeleton are selected one at a time,
and all the skeleton points in the skeleton cloud that might belong to this segment are
connected to this ‘bone’. The selection pointer of skelselect allows selection in the form
of an axis-aligned cube. Most of the segments of the visible human can not be exactly
contained within a cube of any size. This makes it necessary to perform the selection of the
arbitrary selection by repeated selection of smaller cube sections.

Unless special attention is paid to connecting the shoulders, pelvic joints, and the knee,
these regions are susceptible to breakage. This is because our reconstruction algorithm
does not compensate for stretching of the skin, and the rotations of the limbs are faked
by rotation about the joints. Thus, a large degree of rotation will lead to exposure of the
flesh within, since the skin will fail to cover up the rotation. In many cases, there will
appear a visible breakage in the reconstructed volume - due to excessive rotation, improper
connectivity, or poor choice of points for the articulate skeleton. Each such case is different,
and has to be handled differently by the user.

Figure 2.4 shows the final connectivity information for the skeleton at three different
thinness parameter values. Figure 2.5 shows partial connectivity of one foot of the skeleton,

using the cube selection cursor of the program.

2.4 Adding Motion Capture

At this point of the pipeline, the articulated skeleton is passed down to the animator. The
motion capture sequences we have used are typically based on a polygonal abstraction of the

human figure, with each segment being represented as a box. The animator attaches each

10

joint in the articulated skeleton to its corresponding joint in the motion capture mannequin
and applies the motion to this new structure. At each frame of the sequence, the new

coordinates of the joints of the articulated skeleton are stored (as a *.dxf file).

2.5 Post-Motion Capture Steps

Each of the frames produced by the motion capture data have the coordinates for all the
points in the articulated skeleton for that particular frame. These coordinates are extracted,
compared to the original points, and the transformation matrix that will replicate this
position change is back computed. This transformation matrix is stored in a ‘*.trans
file. It may be necessary to apply a global transformation to the entire sequence, in order
to match up the motion capture coordinate system to the skeletonization/reconstruction
coordinate system. The script ‘convertall.sh’, discussed in Appendix A.9, takes care of the
entire process of converting the frames to tskel files. Section 2.7 describes the file formats
used in this work.

Figure 2.6 shows the motion capture sequence as extracted from the dxf files that were
exported by the animation software. Figure 2.7 shows the same sequence after the artic-
ulated skeleton points were extracted, and each segment length adjusted to be the same
as the original articulated skeleton. The differences in segment lengths may occur because
of compression or stretching of segments in the motion capture sequence, which we do not
accomodate for in the current version of our animation process. Figure 2.8 shows the sur-
face reconstruction of the same sequence, after every skeleton point attached to each of the
segments was blown up into its corresponding sphere model. Figure 2.9 shows, for a single
frame, how the different stages of post-reconstruction change the amount of information
stored in the file.

At this point, the transformation matrix at each bone and the list of points attached to

each bone have been established. We shall now discuss the process of reconstruction.

11

2.6 Reconstruction

Reconstruction refers to the process of re-building the original shape in the new pose. In the
case at hand, this means the visible human has to be transformed from its default pose to
each of the poses in the motion capture sequence. There are several modes of reconstruction,
namely binary, mottled, hotspot and sampled, each having its own purpose. The focus of
this thesis shall be on sampled reconstruction. The other modes are discussed in detail in

Chapter 4.

2.6.1 Sampled Reconstruction

The ultimate objective of the reconstruction process is to obtain the sampled human in
the deformed pose. This implies that not only should the new volume retain the shape
information from the original volume, but it should also retain all the color information
as well. To further elaborate, all of the interior voxels must be maintained. Sampled
reconstruction produces this required objective.

Sampled reconstruction requires the original volume as a lookup and the *.tskel file (see
next section for file formats) for the bones, skeleton points and the transformations. The
tskel file contains the list of bones in the bone skeleton, the transformations associated to
each of these bones, and the skeleton points attached to each of the bones. For each skeleton
point present in the tskel file, the reconstruction program reads in the point coordinates and
the DT value. The coordinates are transformed by the transformation matrix associated
with the bone to which this point belongs. A sphere is located in the destination volume
with these transformed coordinates as the center, and the DT value as the radius. This
sphere is now scan-filled: each voxel encountered in the scan-fill is multiplied by the inverse
of the transformation the skeleton point in hand underwent. This gives us the coordinates
of the corresponding voxel in the original, undeformed (lookup) volume. The data from the
lookup voxel is then copied to the reconstruction voxel.

Voxels may fall within boundaries of multiple spheres. When this occurs, we apply a
rule of relaxation - the voxel is assigned to the skeleton point that is closest to it. Since the

closest skeleton point is not known at the start of the program, we compute the distance

12

Table 2.1: Comparison of Reconstruction Accuracy With Identity Transform

Metric Thinness Value

1.03 1.40 1.74 2.22 2.48
Number of skel points 29777 13068 5706 1282 378
No. of voxels in recon- | 1621724 | 1578988 | 1536805 | 1434874 | 1302138
structed volume
% voxel loss from 1.03 0 2.63 5.23 11.52 19.70
reconstruction

Table 2.2: Comparison of Reconstruction Accuracy With Framel2 of Jump Sequence

Metric Thinness Value

1.03 1.40 1.74 2.22 2.48
Number of skel points 29777 13068 5706 1282 378
Reconstruction time on | 48m 51.10s | 24m 42.85s | 12m 5.61s | 3m 10.88s | 1m 8.98s
cyan
Number of voxels in re- 1610541 1603810 1591507 1537901 1434522
constructed volume
% voxel loss from 1.03 0 0.42 1.19 4.52 10.93
reconstruction
“Hotspots” - maximum 34 32 25 18 13
redundancy in recon-
struction

between the voxel and the skeleton point, for every sphere the voxel belongs to. The voxel
is filled with the new lookup value only if this distance is less than the distance from the
voxel to the previous skeleton point that filled it. At the start of the program, all distances
are set to an arbitrarily large value. This ensures that the first sphere that touches a voxel
always fills it. Spheres that touch the same voxel later in the execution of the program
have to conform to the relaxation policy. Implementation details are dealt with in the next

chapter.

2.7 File Formats

Numerous file formats are used in the volume animation pipeline. These include:

e *.vol: Volume file. Contains the raw data in binary format. Data at each voxel is
stored as an unsigned char value, in the range [0-255]. The voxel data is stored in
increasing order of x, then y, and then z. Both the original volume and the animated

volumes are present in this format.

13

*.skel: Skeleton file. Contains the cloud of points created by the skeletonization
process. The points are unconnected. Each dataset typically has a few skel files, at

different resolutions.

o *.mskel: Multi-Skeleton file. Same as skel file, with an additional column of thinness
value included for each skeleton point. Each dataset has a single mskel file, created

at a very low thinness (i.e. with as much detail as possible).

e *.connections: Bones file. Contains the list of the bone segments defined for the
bone skeleton. Also defines the hierarchy of these bones. Each dataset typically has

a single connections file.

e *.connect: Connected skeleton. Contains the bone skeleton, along with a list of
skeleton points for each bone. Each skeleton resolution produces one connect file.
Usually, for a particular animation, the skeleton resolution is fixed, so we deal with a

single connect file.

o * trans: Transformations file. Contains the matrix transformations the bone skeleton
undergoes in order to form the frames of the animation. Each frame of the animation

has its own trans file.

o *.tskel Tskel file. Contains a merge of the information contained in the trans and
the connect file - i.e., has every bone segment, the transformation associated to this
bone segment, and the list of skeleton points attached to this bone segment. As with

the trans file, each frame of the animation has its own *.tskel file.

2.8 Use of the Volume Animation Pipeline

The programs that make up the volume animation pipeline, and the process flow through
the use of these programs, is shown in Figure 2.10. In this section, we shall briefly go over
the steps required to produce an animation sequence. Syntax details of the use of these
programs are mentioned in the user manual in the appendix of this thesis.

The pipeline will be discussed with the Visible Human Dataset as the example dataset.

Details of the dataset have been discussed in Section 5.2 of this thesis.

14

. combineToGrayVolume.sh The Visible Human Dataset is obtained as a series of
images, each defining one plane in the Z-axis. This script takes each of these images,
converts them into 255-color grayscale images using the SGI utility convert. These
grayscale images are them stacked end-to-end to form a single volume file. Each voxel
in the volume file has data in the range of 0-255, and can be read in as an unsigned

character.

. MapImages This stream of the pipeline is used to extract the color information from
the original volume, and create a best match of 255 colors that will be used later as the
color table for rendering the volumes. This program scans through a sample image,

such as Figure 4.2, and extracts the best fitting set of 255 colors.

. InvCMap InvCMap takes in the 255 colors generated by Maplmages, all the colors
present in the mapping image (in this example, Figure 4.2), and creates a mapping
table that maps each of the 24-bit colors present in the mapping image to it’s best fit

color in the 255-color table.

. newSort NewSort takes in the 255 colors generated by Maplmages, and sorts the
colors in a visually smooth gradient. This is required to avoid unpleasant color bleed-
ing in the final rendered image. Details of implementation of this program have been
discussed in Section 4.2. At the end of this step, we have the final colormap that is

passed on to the renderer.

. Convert2BinaryVolume

Skeletonization requires a segmented volume, with all the points that are considered
‘inside’ the volume marked as 1, and all the points that are ‘outside’ as 0. Con-
vert2BinaryVolume takes in the grayscale volume generated earlier, and a thresh-
old value passed as a parameter. All voxels that have a value greater than, or equal
to, the threshold value are considered to be inside the volume, and marked as 1 in the

new binary volume created. All the other voxels are given a value of 0.

. Fill

15

The binary volume generated in the step above may contain cavities - areas that have
voxel values as 0, even though they are contained within the volume. This situation
arises when the original volume has values within it that are less than, or equal to,
the value of the blank region. For instance, if the air around the volume has a value
of 0, the air in the body cavities such as the lungs will also have a value of 0. Presence
of such cavities will lead to incorrect skeletonization. The Fill program does a convex
hull filling of these blank spaces. The program takes in a bounding box, and fills up

any cavity that is completely surrounded by filled (i.e. voxel value 1) regions.

7. euclidskel

This program generates the skeleton of a binary volume. Details of the implemetation
of this program are discussed in [15, 16, 19, 23]. This program takes the binary volume

and it’s bounds passed as parameters, and generates an mskel file.

8. sort

The mskel file generated above is not sorted in any order. We use the Unix shell sort
utility to sort the mskel file in decreasing order of thinness. This way, by extracting
a desired set of lines from the top of the file, we obtain a thinner skeleton - since the

points that have thinness values lesser than desired are culled from the bottom.

9. skelselect

This is a graphical user interface to allow the user to select a bone skeleton (consisting
of key joints within the skeleton file generated above), and establish connectivity of
the cloud of skeleton points to this bone skeleton. Details of use of this program is
mentioned in the user manual in the appendix of this thesis. Implementation details
of this program can be found in [23]. Details of a new version of the tool that has
been developed can be found in [24]. The output of this program is a bone skeleton
and a connect file containing the mapping of the cloud of skeleton points to the bone

skeleton.

10. Animation Process

11.

12.

13.

14.

15.

16

This step involves handing over the bone skeleton to the animator, who applies motion
capture to the skeleton using a conventional animation package like Maya. Each frame

of the motion capture sequence is now exported from the package as a dxf file.

dxf2iv

This program takes in the dxf files generated by the animation package above, and
converts them into Inventor file format. This file format is required by the programs

that follow to extract the points of the bone skeleton from the motion sequence.

boxes2iv

This program takes the Inventor file generated above, and extracts the positions of
the joints from our original bone skeleton in each of the frames. This gives us the new
coordinates of each joint in each frame of the motion capture sequence, in the form

of a series of articulated skeletons.

ivskeladjust

Our pipeline currently does not accomodate stretching of bone segments. However,
most motion capture sequences have some amount of stretching. ivskeladjust com-
pares the length of each bone in the new series of articulated skeletons and corrects

the lengths of the segments that were stretched.

ivskelgetrot

This program takes in the series of articulated skeletons, and computes the transfor-
mation matrices for each joint in the bone skeleton for each frame of the animation
sequence. The output of this program is a trans file, containing the list of bone points

and their transformation matrices, for each frame of the animatio sequence.

connect2tskel

This program takes the trans file generated above, and the connect file generated
by the skelselect program, and merges the information. The tskel file thus produced
for each frame of the animation contains the list of bone points, their transformation

matrices, and the list of skeleton points that are attached to each of these bone points.

17

16. ReconstructEuclid

This program is the main focus of this thesis. Impelmentation details of this program
are discussed in Chapter 3 of this thesis. ReconstructEuclid takes in each tskel
file generated above, and the original volume to be used for sampling the correct
voxel values, and generates a new volume in the animated pose of the frame being

reconstructed.

17. vtkRender

Since volumes are data files and can not be visually seen, we need a rendering tool to
generate an image of the volume in the new pose. vtkRender takes in volume files
in vtk format and generates image files after rendering the volumes. Camera angles,
cropping distances, colormaps, and other rendering variables are passed as command

line parameters.

This thesis will focus on the improvements carried out to the reconstruction phase of the
volume animation pipeline. Chapter 3 will elaborate on this topic. In order to improve the
performance of the entire pipeline, additional enhancements were carried out, which will be

described in Chapter 4.

Original Volume

—

Skeletonization

Skeleton points

h 4

Connectivity

Connected Skeleton

h 4

Color map Extraction

Animation (1n Maya) Color lookup table

Articulatd Skeleton

h 4

Reconstruction

New 3D volume

h 4

Rendering

New 2D image

Figure 2.1: The Volume Animation Pipeline

18

19

Figure 2.2: The Skeleton Points, Shown Inside the Surface Hull of the Visible Human
Volume, in 3 Different Thinness Values- 1.8, 1.5, and 1.3

20

Figure 2.3: Root Nodes Selected In The Proper Order, Skelselect Started Up With The
Skeleton Points And The Bone Skeleton, Partially Connected Skeleton

21

Figure 2.4: Final Connectivity Information Shown At 3 Different Thinness Values Using
Skelselect

22

Figure 2.5: Partial Connection of a Foot Node in Skelselect

Figure 2.6: Inventor Files Converted From The Motion Capture Dxf Files

Figure 2.8: Sequence After Connecting Skeleton Points And Reconstructing Spheres

23

Figure 2.9: Splatter of The Various Forms of Post-Animation Representation

24

25

[Tiff]

combhine ToGrayVolume.sh

’

vol

[1
L i

¥

b

MapImages Convert2 E‘iillllawvulm

InvCMap
newSort

[%11

enclidskel
sort

(icot) (ialp)

[mskel]

skelselect

[conneet] ——— sa‘n!re.iv] [_cumui:tipn_s]

Animator

[dicfl (Camera Angle]

dxf2iv
(Framile##.iv]

hoxes2iv
» ivskeladjust | |a
ivskelgetrot

{ trans)

cunnectEtskei
tskel
(X)

ReconstructEaclid
1
{ vo1)
1

vikRender "

o

[tiif]

Figure 2.10: The Volume Animation Pipeline

26

Chapter 3

Enhancements to the Pipeline

3.1 Faster Reconstruction

A brief overview of the volume animation pipeline has been discussed in the previous chap-
ter. Here we shall concentrate on one particular phase of the pipeline, the reconstruction
process. This is the most time-consuming process in the pipeline. Hence, it’s important to
optimize this program as much as possible, in order to have a faster turn-around time for

volume animations.

3.1.1 Current Approach

The process of reconstruction is computationally intensive. This is primarily due to the
intense floating point computations- for Euclidean distance transforms, and martix multi-
plication and inverse operations. Details of distance transform computations in the 3-4-5
metric and the Euclidean metric are discussed in [22].

The reconstruction code scanfills a sphere about each skeleton point. In case of binary,
or pseudo-binary, modes of reconstruction, the scan-fill is simple - all points within the
sphere boundary have to be filled in with the constant data value. In the case of sampled
reconstruction, this is somewhat more intensive - each voxel that lies within the boundary of
the sphere has to be filled in with the data value corresponding to that point in the original
volume. This involves matrix operations that are very expensive in terms of computation
time.

The original method of sampled value reconstruction [15, 19, 22, 23] had the following

steps:

1. The original, undeformed volume is loaded into memory to act as the lookup volume.

27

. Memory is allocated for buffer for the final volume. The size of the final volume is

passed as a parameter to the program.

. The *.tskel file containing the skeleton information for the frame in hand is scanned
for a root node (bone). This is marked by a line of format “Root: [x1] [y1] [21] :: [x2]

[¥2] [22]” in the text of the tskel file.

. Once aroot has been found, the transformation matrix associated to this bone is read
in. This information is contained in the 4 lines immediately following the “Root” line
in the tskel file. The matrix is stored in the file as a 4x4 transformation, in floating
point precision. The inverse of this matrix is computed, and both the matrix and its

inverse are stored in memory.

. The lines that follow in the tskel file contain the centers and the radii of all the skeleton
points that are associated to the current root segment, and thus are subject to the
same transformations. These lines are read in one at a time, each containing data in

the form of the sphere center (x, y, z), and the DT of the sphere.

. For each sphere, a cube of size corresponding to the DT of the current sphere is
scanned. Each point of the cube is checked for inclusion in the sphere - the voxel is
inside the sphere if its distance from the sphere center, measured in the 3-4-5 metric,

is less than the DT of the sphere.

. For voxels that are found to lie inside the sphere, we use a ‘stencil buffer’ to determine
if the value at this voxel is going to be filled in by this sphere, or by some other sphere
that also includes this voxel. A stencil buffer is an array of the same size as the
destination volume, and stores, at each voxel, the distance to the center of the last
sphere that filled this voxel. All values are set to an arbitrarily large number to start
with. The rule of relaxation states that a sphere will fill in a voxel only if the distance

mentioned above is less than the value of the stencil buffer at that voxel.

. If the voxel satisfies the relaxation rule above, the coordinates are multiplied by the
inverse transform matrix to obtain the corresponding point in the lookup (original)

volume.

10.

11.

12.

28

. The data in the lookup volume voxel thus obtained is filled in to the point.

The steps 7-9 are repeated for all voxels within the bounds of the cube in step 6.
Steps 5-10 are repeated for all spheres included under the root node in step 4.

Steps 4-11 are repeated for all root nodes in the tskel file.

3.1.2 Disadvantages of the Approach

The following are the most obvious disadvantages of the previous approach:

. The scan-fill of the sphere has to start from the enclosing cube. Every point in the

cube is tested for inclusion into the sphere. Since the spheres themselves overlap each
other, and the cubes are larger than the spheres, this results in a huge number of

redundant computations.

. In order to get the mapping correct, each voxel is multiplied by the inverse of the

transform the skeleton point underwent. This is the transformation associated with
the sphere the voxel belongs to. This is an operation involving 4x4 matrices, and
even when using fast matrix multiplication libraries, reconstruction easily becomes

the bottleneck factor in the animation pipeline.

. The relaxation rule says a voxel is to be considered included in a sphere if the distance

to the center of this sphere is less than the distance to the center of the last sphere
that filled this voxel, or the sphere is the first one to touch this voxel. This involves
computation of distances for every voxel that is within the bounds of the sphere under
consideration. When the algorithm is ported to the Euclidean metric, this involves
floating point square root computation, one of the most expensive computations in

terms of time required.

. Similarly, in the Euclidean metric, the computation of distance from a voxel to the

center of the sphere, to check for inclusion in the sphere, becomes a slow computation.

. In the 3-4-5 metric, for small volumes (with maximum DT less than 255), the stencil

buffer can be of type unsigned characters, 1 Bytes per voxel. For volumes having

29

maximum DT greater than 255, we require each stencil voxel to be at least an integer.
In the Euclidean metric, the stencil buffer has to be of floating point precision. This

means a 4- fold or higher increase in the size of the buffer.

The idea is to optimize the algorithm so that the number of floating point operations,
particularly square root computations and matrix operations, are minimized, while main-
taining the general idea of filling the volume from the lookup and conforming to the relax-

ation policy. Several optimizations were carried out, as discussed below.

3.1.3 New Reconstruction Algorithm

The new reconstruction algorithm is as follows:

1. The original, undeformed volume is loaded into memory to act as the lookup volume.

2. Memory is allocated for the final volume and the stencil for storing the distance of
each voxel to the center of the nearest sphere that it belongs to. The buffers are

initially filled in with zeros.

3. Each line of the tskel file is read in. If the line is detected to be a “Root” information,
the matrix following the line is read in, the inverse of the same computed, and both

matrices stored in memory.

4. If the line read in is a skeleton point, the center of the sphere and its distance transform
are read in. The sphere center is multiplied with the transformation matrix to obtain

the new center in the transformed volume.

5. The new center is passed on to a Bresenham circle-drawing algorithm that generates
the circle made by the intersection of the sphere with the Y-Z plane. This gives us a
series of z-values and the radius of the circle in the XY plane corresponding to each

z-value.

6. Each (z-value, radius) pair generated in step 5 is fed into another Bresenham circle

drawing algorithm that generates the end points of the circle in the XY plane.

10.

11.

30

. The end points generated above are multiplied by the inverse transformation matrix

computed in step 3, to obtain the corresponding points in the original undeformed

volume.

. We now have a line in the transformed volume, aligned in X, and a corresponding

line in the lookup volume. The former is traversed along the x- direction, one step at
a time, and the data in the corresponding point in the lookup line is copied to this
voxel, so long as the relaxation rule is satisfied. The relaxation rule is checked by
computing the distance from each voxel to the center of the sphere being currently
reconstructed, and comparing this distance to the distance stored in the stencil buffer
for the same voxel. If the new distance is smaller than the previously stored value,
the data at this voxel is updated from the lookup volume, and the stencil updated to

the new nearest distance computed.

. Steps 7-8 are computed for each pair of points generated in step 6.

Steps 6-9 are computed for each pair of points generated in step 5.

Steps 5-10 are computed for each skeleton point read in step 4.

3.1.4 Scan-Filling a Sphere Using Double Bresenham’s Algorithm

A major time-consuming operation in the original reconstruction algorithm was detection

of points that are inside a given sphere. The easiest way to do this would be to scan the

axis-aligned cube that contains this sphere, and compare the distance of each voxel in this

cube to the center of the sphere with the radius of the sphere. This is extremely redundant

and time consuming, since all we really need is the two end points that each scan line

intersects the sphere at. In other words, we need a list of points that make up the boundary

of the sphere.

To this effect, we use two instances of Bresenham'’s circle drawing algorithm. The basic

algorithm is as follows:

while (newY<= newZ)

{

31

ScanXYCircle(newY, newZ);
ScanXYCircle(newY, -newZ);
ScanXYCircle(newZ, newY);

ScanXYCircle(newZ, -newY);

if (diff < 0)

{
diff += 4*newY + 6;

}

else

{
diff += 4*(newY-newZ) + 10;
newz--;

}

newY++;

In the code example above, each ScanFillX (X, Y, Z) scan-fills a line from (-X, Y, Z) to
(X,Y, 7).

The first call to the routine draws a circle in the Y-Z plane. This is the circle that the
sphere would make on the YZ plane, had it been centered at the origin. In other words, we
obtain, for each value of Z in the sphere, the projection of the sphere at that z-value on the
X axis. This gives us the radius of the circle in the XY plane for each z-value within the
sphere.

The second call to the routine takes this radius and gives us the boundary points of
the circle in the XY plane. Since the second routine is called for every z-value in the first

routine, the boundary points of the entire sphere are thus obtained.

32

Line in original coordinates:
inverse transform of the other
line, varies in all X, ¥ and Z.

Px

Line in transformed
coordinates: varies
in x only, fixed Y and 2.

Figure 3.1: Scan-filling One Line from Another, Using Parametric Equations

3.1.5 Parametric Equations to Reduce Matrix Multiplication

The use of parametric equations to minimize the number of matrix multiplications while
scan filling a line is illustrated in Figure 3.1. As given in this figure, we scan across the
line P1-P2. For each point on P1-P2, we compute the corresponding point on the line
P3-P4, based on the ratio of the point on P1-P2 to the total length of the line. Thus, P1
corresponds to P3, P2 does to P4, and every point in between on P1-P2 finds it’s match on

the other line.

3.1.6 Faster Relaxation Rule

The rule of relaxation we had laid down earlier says that a voxel is filled during the scan fill
of a particular sphere only if the distance from the center of the sphere to this voxel is less
than the distance from the center of the last sphere that filled the same voxel. This must
be done to account for overlapping spheres incorrectly overwriting values after animation.
As mentioned earlier, at the start of the program, the entire stencil is set to an arbitrarily
large value.

This essentially means computation of the distance from the voxel to the center of the
sphere, carried out order-N times over the volume. This is a substantial task in Euclidean
coordinates, as each distance computation involves a square-root operation. Moreover, the
stencil has to be in floating point precision - considering the super huge volume sizes, even
when storing the volume as an array of unsigned integers, having a buffer of this size with
floating point precision requires a tremendously large amount of memory.

A better method- both in terms of memory requirement and in terms of speed - is to

33

maintain the stencil buffer in the 3-4-5 metric. This will allow us to maintain the stencil as
unsigned integers. Moreover, the 3-4-5 metric does away with the expensive computation
of the square root. Leaving the distances squared leads to expensive memory allocation in

order to store the large (squared) distances.

3.1.7 Code Level Optimizations

Our basis for optimizations was to make the common case faster. In the reconstruction
process, this refers to the line filling algorithm, since this is called for every pair of points
generated for every circle drawn for every z-value in the sphere that is built around each of
the skeleton points undergoing reconstruction. If the number of skeleton points is of O(N),
the number of times the line scan-fill routine is called is of approximate O(N?).

Some common methods of code level optimization are the following:

e Common Subexpression Elimination e Strength reduction e Copy Propagation and
Dead Store Elimination e Global variables vs. parameter passing e Inlining Functions e

Use of Compiler Optimization Flags

3.1.8 Timing and Profiling: Results of the Optimizations

Several optimization solutions have been mentioned above. The general approach to opti-
mization is to make the common case faster. For this, we need to know which code section
of the program is taking the largest share of the execution time.

A profiling of our code, using the SGI utility ‘pixie’, gave us this information, as can be
seen from the last column of Table 3.1. As can be seen from the table, the old method of

reconstruction had the following ‘hotspots’, or time-taking routines:
e the scan-fill routine for the spheres,
e the distance computations for the stencil buffer, and
e the Inventor routines for matrix multiplication.

The optimization solutions discussed in the preceeding sections were applied to the old

code to remove these hotspots. The results of the various methods of optimization are

shown in Table 3.1.

34

35

Table 3.1: Code Profiling: Comparison of Various Algorithms and Optimizations

Description # of instruc- | Execution Average cy- | Function execution times
tions time (sec) | cles per in- | (% of total time)
struction

dv _reconsetskel 20,060,490,172 | 101.375 0.985
growSphere 75.9%
sqrt 10.7%
multVecMatrix 6.7
rint 6.6/

Reconstruct Euclid 12,497,858,353 | 58.497 0.913

(Scan fill) GrowYLine 20.9Y%,
GetSquareDistance 20.2j
floor 19.2%
Index0f 18.8%
SampledLookup 8.5/

Reconstruct Euclid 10,421,646,375 | 53.710 1.005 -

(stencil modified to

345 metric)

Reconstruct Euclid 7,926,050,618 | 33.257 0.818

(Sogle- i functions GrowYLine 50.1Y

made inline) Get345Distance 22.1%
SampledLookup 19.47,
multVecMatrix 2.4}

Reconstruct Euclid 2,5615,130,670 | 12.534 0.972

(binary recon only- GrowYLine 84.2Y

with above version of .

the sampled recon) powt 4.6

P exp 2.9

log 2.8

Reconstruct Euclid 7,625,832,381 | 31.950 0.817

EPOWf . Chang;d GrowYLine 52.1Y

° . Sqtr, ey Get345Distance 23.0%

mipsdoptimized) SampledLookup 20.2Y%
multVecMatrix 2.5

Reconstruct Euclid 1,499,866,709 | 10.943 1.423

with ~ Bresenham'’s ScanFillX 97.6Y,

scanfill, binary

mode.

With Bresenham, | 1431634714 10.719 1.460

after ‘ inlining and ScanFillX 97.3Y

speeding up the

345 distance com-

putation, binary

data.

36

Chapter 4

Additional Functionality

The various programs that make up the volume animation pipeline are shown in Figure 4.1.

4.1 Creating the Colormap

The original visible human volume is in 24-bit color. The size of the dataset is about 1.1
GB (GigaBytes). Note that this size is just for the man in the standing position - when
motion capture is applied to a volume, its final size can be as much as 10 times or more of
the original pose. Since the number of unique colors in the original volume was not large
(the colors were mostly shades of red / tan), we mapped the colors to 255 unique best-fit
colors in order to save on volume size (by saving as unsigned characters).

The steps needed include:

1. Determining 255 unique colors in the volume.
2. Map colors to these 255.

3. Create a new colormap.

We took slices from various regions of the volume to create a collage, shown in Figure 4.2,
that had most of the colors in the volume. This image was then reduced from 24-bit color to
8-bit color, i.e. 255 colors. These 255 colors would form the colormap of the final volume.
The extracted colormap is shown in Figure 4.3. We used the freely available program,
InvCMap, to map these colors to the volume. InvCMap creates a Voronoi diagram
of the desired colormap on a 24-bit colorspace. The output of InvCMap is a volume,
colormap.vol, that maps the 24-bit colorspace to an unsigned char value, which maps to the

8-bit colormap in butchershop.gif. Any voxel, at coordinates [R, G, B] in colormap.vol, has

37

an unsigned char data value that maps the color [R, G, B] to its nearest match in the 8-bit
colormap provided by butchershop.gif.

We now run mapImages on each slice of the 24-bit color volume (stored as a .ppm file),
and obtain a new set of .ppm files that are in 8-bit color of the desired colormap. These

.ppm files are re-combined to give us an 8-bit color volume.

4.2 Sorting the Colormap

The 8-bit color volume we produced in the step above works fine in theory - we have a
volume, where each voxel has a data value that points to a colormap, and each slice looks
fine in 255 colors. However, when viewed as a volume, using volume visualization packages
like Bob or Volumizer, we face a problem - while rendering, each voxel is anti-aliased with
the colors of its neighboring voxels. In our case, though the neighboring voxels have colors
that are visually similar, the lookup indices into the colormap are totally different, since
we created the colormap without sorting the colors in any way. As an example, suppose
indices 100 and 200 are both very similar shades of dark red. When anti-aliasing takes place,
the voxels will have a value somewhat between the two, say 135. Now, index 135 in the
colormap can very well be green, or blue, or any other shade. This results in a very speckled
volume, each color seeping into the next in a randomized colormap, and is not recognizable
as a human shape. What is needed is a “sorted” colormap with smooth transitions in color
range.

The problem is thus one of sorting a series of values based on their [X, Y, Z] coordinates,
the analogy to the [R, G, B] values that we actually have, and create the smoothest possible
gradient. Some possible sorting methods may perform:

¢ Sorting first by B, then G, then R values, using a sort like radix sorting.

e Sorting by intensity, where intensity is the sum of (R + G + B) for a color cell.

o Cluster sorting - insert a few seeds into the colormap at adjustable intervals, assign
each color cell to the seed nearest to it, and then sort all cells assigned to a particular seed
by their absolute distance from the seed.

However, the results from these sorting methods did not satisfy the requirement - the

38

sorted colormap was not as smooth as is required to get a good rendering, specially when the
transparency value (alpha) is kept low. A low transparency implies that a greater number
of voxels contribute to the color of one single pixel in the final redered image, and hence it
is all the more required to render with a smooth colormap to avoid color blending artifacts.

One method of sorting tried out was sorting by gradient. Like other sorting methods,
we compute the distance of all the free voxels from the last voxel that has already been
added to the sorted result. In addition to this, we add a penalty factor to this distance. The
penalty occurs when any of the gradients - in R, G or B - undergo a change. For instance,
suppose the last 2 points that were added create a gradient of increasing R, decreasing G,
and increasing B, and that the penalty parameter has been set to ‘P’. Suppose the closest
point by distance changes the gradient to decreasing R and decreasing B, while continuing
to increase the G value, and that it’s distance from the last added voxel is ‘D’. The effective
distance of this voxel is then computed as ‘D + 2P’. Another voxel may be at a distance
greater than D, but following the gradient - due to zero penalty, this point will have a lesser
effective distance. The voxel that has the least effective distance from the last added voxel
will be inserted into the sorted colormap. By adjusting the penalty factor, we can get a
smooth transition from darker to lighter colors. Once the end of a gradient is reached, i.e.
there are no other points that are in the same gradient direction, the voxel with the least
effective distance will reverse the gradient in at least one axis, and thereby create a new
gradient to follow.

This sorting yielded results that were much better than the previous methods discussed,
and did produce a smooth colormap. However, there are sharp breaks where the gradient
suddenly reverses, as can be seen from Figure 4.4.

After adjusting the parameters of the weighted gradient method, and combining this
with the other methods discussed earlier, it was decided that the position of each color voxel
has to have an influence on its neighboring cells. The influence of the surrounding voxels
will result in a smoother overall transition. However, local variations must be permitted,
otherwise a very smooth curve will end in an abrupt change of direction to another smooth
curve in the opposite gradient direction. It was because the penalty method was preventing

these local variations that it was ending up with a number of small gradients after it was

39

done with the primary gradient, and these small gradients lead to an unacceptable tailing
end to an otherwise smooth colormap.
To this effect, we resorted to the following hybrid method of sorting, the results of which

can be seen in Figure 4.5.

void SuperGradientSort() {

newR = 2*theArray[1] [R] - theArray[0] [R];
newG = 2*theArray[1] [G] - theArray[0] [G];
newB = 2*theArray[1] [B] - theArray[0] [B];

for (i=5; i<MAXCOLORS-1; i++) {
minDist = 9999;
minIndex = i;

searchR = searchG = searchB = 0;

baseR = theArray[i-1][R];
baseG = theArray[i-1][G];
baseB = theArray[i-1][B];

rangeR = newR - baseR;
rangeG = newG - baseG;
rangeB = newB - baseB;
deltaR = rangeR/20;
deltaG = rangeG/20;

deltaB

rangeB/20;

for (counter=0; counter<=20; counter++) {

searchR = baseR + deltaR*counter;

searchG = baseG + deltaG*counter;

searchB = baseB + deltaB*counter;

closestIndex = GetClosestFuturePoint(searchR, searchG, searchB, i);
tempDist = deltaR*counter + abs(theArray[closestIndex] [R] - searchR);
tempDist += deltaG*counter + abs(theArray[closestIndex][G] - searchG);

tempDist += deltaB*counter + abs(theArray[closestIndex][B] - searchB);

40

if (tempDist < minDist) {
minDist = tempDist;

minIndex = closestIndex;

}

SwapRows (i, minIndex) ;

newR = 2*theArray[i] [R] - 0.5 *theArray[i-1][R] - 0.5 * theArray[i-2][R];
newG = 2*theArray[i] [G] - 0.5 *theArray[i-1][G] - 0.5 * theArray[i-2][G];
newB = 2*theArray[i] [B] - 0.5 *theArray[i-1][B] - 0.5 * theArray[i-2][B];

The best results were obtained when the colormap was first sorted in increasing order

of intensity (R + G + B) and then subjected to the sorting method discussed above.

4.3 Segmentation

We start the volume animation process from a sampled dataset, such as the visible human
dataset. Each data-point (voxel) in this dataset has a value between 0 and 255 (inclusive).
This 256-color index was formed by reducing the photo dataset from true (24-bit) color to
256 unique colors, as described in the previous section.

It is necessary to segment out the required volume from the background in order to
animate the volume. This is performed by passing the volume through a band pass filter.
The filter program takes in a lower and upper threshold. Any data value within the range
is changed to 1, while all values falling outside the range are changed to 0.

It is important to verify that the segmented volume does not have ‘holes’ within it
- a result of regions of the sampled volume falling below the threshold of segmentation,
and melding with the background. If formation of holes is unavoidable, for instance, if

the background has excessive noise of the same data value as these regions in the volume,

41

a region growing program can be used, or any computer vision operator can be used,
to manually fill in the holes prior to the next step (skeletonization). The Fill program,

discussed in the appendix, is one such program that does a convex hull filling of the volume.

4.4 Reconstruction Modes

The reconstruction program can be run in one of several modes. The most common mode
is the one that has been referred to so far in the thesis, ‘sampled reconstruction’. Here we

shall discuss some of the other modes of the program, and their purposes.

4.4.1 Binary Reconstruction

Binary reconstruction produces a binary representation of the shape in the new pose. All
voxels belonging to the shape are marked with a single non-zero value, typically either 1 or
255, and the rest of the voxels are set to zero. This is the fastest mode of reconstruction,
and is used for verification of proper reconstruction, detection of breakage at joints, and a
general idea of how the volume is going to look.

The reconstruct program processes one bone of the articulated skeleton at a time. The
bone, the transformation it has to undergo, and the list of skeleton points attached to it are
read in from the ‘*.tskel’ file. Each skeleton point now has to be re-grown into the sphere
it represents, the radius of the sphere being the DT associated withthe skeleton point, at
the correct position. The skeleton points are multiplied by the transformation matrix to
obtain the new center of the reconstruction sphere, and all the points in the sphere are
filled with the pre-decided data value. Since all the points in the sphere have the same data
value, rotation of the sphere about itself does not matter. This means that the filling of the
sphere is straightforward, without the involvement of further matrix multiplication. This
is why binary reconstruction is an order of magnitude faster than sampled reconstruction

(discussed later).

42

4.4.2 HotSpot Reconstruction

For evaluation of the efficiency of reconstruction, we often need to know exactly how many
times a voxel was visited, or filled in. If the volume is reconstructed with all transformations
set to unity matrices, each voxel will be visited at most once in the entire reconstruction
phase. However, when motion is applied to the shape, the skeleton points move about,
dragging their sphere boundaries along with them. This changes distances between the
spheres, and brings up regions of boundary interference, at which each voxel is visited by
all the spheres within which it now lies. Multiple visits to a voxel indicate inefficiency in
reconstruction.

The HotSpot mode of reconstruction gives us a clear picture of exactly how many times
every voxel was visited. Instead of filling in the pre-decided data value in binary recon-
struction, this maintains a ‘fill count’ at each voxel, and increments the count every time
the voxel is visited. Important performance parameters that are obtained from this mode

are the maximum and average number of times voxels were visited.

4.4.3 Mottled Reconstruction

This is yet another mode of pseudo-binary reconstruction, where each sphere is filled with
a different data value. The reconstruction thus consists of multi colored spheres, and allow
us to look into connectivity issues that come up when the shape undergoes transformations.
For instance, it may be observed that the region that was expected to be a part of the upper
arm is being reconstructed from a sphere of high distance transform centered in the chest
cavity. In such a case, adequate changes are incorporated to the connectivity, by moving

more points to the upper arm from the chest spheres, to compensate for this error.

4.4.4 Sampled Reconstruction

This is the most desired mode of reconstruction, and gives us the deformed volume with
the color information retained from the original volume. This mode has been discussed in
detail in chapter 3.

In chapter 3, we saw the enhancements carried out on our major issue, the reconstruction

43

phase of the pipeline. In this chapter, we have seen the enhancements carried out to some of
the other stages of the pipeline. In chapter 5, we shall see the results of all the optimizations

and enahncements discussed so far.

44

[Tiff]

combhine ToGrayVolume.sh

’

vol

[1
L i

¥

b

MapImages Convert2 E‘iillllawvulm

InvCMap
newSort

[%11

enclidskel
sort

(icot) (ialp)

[mskel]

skelselect

[conneet] ——— sa‘n!re.iv] [_cumui:tipn_s]

Animator

[dicfl (Camera Angle]

dxf2iv
(Framile##.iv]

hoxes2iv
» ivskeladjust | |a
ivskelgetrot

{ trans)

cunnectEtskei
tskel
(X)

ReconstructEaclid
1
{ vo1)
1

vikRender "

o

[tiif]

Figure 4.1: The Volume Animation Pipeline

45

Figure 4.2: Butchershop.gif - Showing Range of Colors in the Dataset

Figure 4.3: The Original Colormap Extracted from butchershop.gif

46

Figure 4.4: Colormap Sorted by Gradient with Penalty. Note the Discontinuities.

47

Figure 4.5: Final Results from newSort

48

49

Chapter 5

Results

Some of the improvements to the execution time presented by this thesis work have been
presented in the preceeding chapters. Here we present a few more results that were targeted

to bring out the key features of the enhanced volume animation pipeline.

5.1 Execution Time Improvements

The key focus of this thesis work was to improve upon the execution time of the reconstruc-
tion program. The results obtained are seen in the following figures.

Figure 5.1 shows the run time for reconstruction of the left leg of the visible human.
This dataset has a resolution of 103x120x540 voxels, a size of 6.TMB, in the default pose.
The skeleton was untransformed in position-1, and rotated by 45 degrees in position-2.
The increased time in the second reconstruction is mainly due to the increased size of the
resulting volume, resulting in increased disk write time.

Figure 5.2 shows the speedup for the sample cube dataset. This dataset is of resolu-
tion 128x128x128 voxels, a size of 2MB. The skeleton was rotated by 45 degrees for this
reconstruction.

Figure 5.3 compares the run times for four different skeletons of the half-sized visible
human. In the undeformed pose, this volume has a resolution of 290x169x940 voxels, a
size of 46MB. The four frames were taken from 4 different animations. As we can see
from the execution times, for a given dataset, the program takes roughly the same time to
reconstruct, irrespective of the transformations the skeleton undergoes. This is because the
time required for reconstruction depends on the number of skeleton points present in the
original volume, and not on the transformations they undergo. The minor differences in the

execution times are mainly due to the cost of writing larger file sizes to the disk. The file

50

Let Leg: Position 2
12

mold

mMew

Let Leg: Poaosition 1
11

o
4]
-
o

15 20 25 3o 35

Minutes to Reconstruct

101
mold

az OHew

Test Cube

o 20 40 1) a0 100 120

Reconstruction Time [(seconds)

Figure 5.2: Reconstruction Times for the Sample Cube Dataset

size is determined by the bounding box of the transformed skeleton, and is thus dependent
on the transformations of the frame at hand.

Figure 5.4 presents the average speedup seen by the new reconstruction program, as
compared to the old program.

Figure 5.5 shows the cumulative speedup obtained by the different optimizations applied
to the old program. The speedup after applying all the optimizations was 89.2% over the
old program. As can be seen from this figure, the bulk of the speedup was obtained by
modifying the scan-fill method, followed by the change to Bresenham’s algorithm for the

generation of the points on the hull of the reconstruction spheres.

5.2 Example 1: The Visible Human Dataset

The visible human dataset, in it’s full resolution, has a size of 580x337x1879 voxels. Most of
the animations we have produced deal with the half-size sampled dataset, having a resolution

of 290x169x940 voxels, a size of about 46MB. The dataset was obtained as a series of TIFF

51

Fosition 4

58
Fosition 3

W Old
o New

Position 2

) 522
Faosition 1

0 200 400 600 800 1000

Minutes to Reconstruct

Figure 5.3: Reconstruction Times for the Half-Sized Visible Human

images, a result of the National Library of Medicine’s Visible Human Project, [1]. The
dataset was then reduced to 255 unique colors, and scaled to a size that was easy to use,
while maintaining the expected proportions of a human being.

A few sample images from the animations that have been generated are shown in Fig-
ure 5.6, Figure 5.7, and Figure 5.8. These were generated without the use of any smoothing
kernels. Figure 5.9 shows a rendering of a frame with the near clipping plane someway into

the volume, so the interior details of the volume are made visible.

5.3 Example 2: The Colon Dataset

The original colon volume is shown in Figure 5.10. This dataset is of size 212x150x260
voxels. The objective was to display the colon in a virtually uncoiled state. This was
achieved by skeletonizing the dataset, straightening out the skeleton points, and performing
reconstruction of the new skeleton.

Figure 5.11 shows the isosurface of the segmented binary version of the colon dataset, in
its undeformed state. Figure 5.12 shows the articulated skeleton and a very high thinness
version of the skeleton points of the dataset. Figure 5.13 shows the final low-thinness (dense)
connected skeleton of the colon that was used for the reconstruction process. Figure 5.14
shows the uncoiled version of the colon, reconstructed from the manipulated skeleton. Fig-

ure 5.15 shows the same volume, cut open from the center to show the data that is contained

52

Old

M ey

Relative time

Figure 5.4: Average Speedup with the New Reconstruction Program

Table 5.1: Properties of the Colon Dataset

Property Undeformed state | Deformed State
Size 205x133x261 991x90x94
Zero voxels 6458533 7810403
Non-zero voxels 657632 573457
Percent filled 9.24 6.84
Percent Voxel Loss - 12.79

within. Table 5.1 gives us a few of the properties of the colon dataset.

5.4 Example 3: The Sample Cube Volume

The cube volume dataset was created to give a visual indication of the accuracy of the
reconstruction program. The volume in its undeformed state is shown in Figure 5.16.
This dataset has a size of 128x128x128 bytes. As seen from the figure, the volume is a
3-dimensional checkerboard pattern, filled with alternating voxel cubes of values 50 and
250, shown as darker and lighter squares. The background is filled with zero voxels. The
properties of the volume are shown in Table 5.2. The eucledian skeleton of the volume is

shown in Figure 5.17.

53

Scan Fill optimization

3-4-4 stencil

Strength reduction

0 ptimization Level

Bresenham's circle
algorithm

| [[|
47.1%
64.2%
68.5%
89.2%
N I I I I
1] 1ID QID SID 4ID SID GID ?ID SID an

Percentage Speedup Over Old Code

100

Figure 5.5: Cumulative Speedups Obtained by the Various Optimizations to the Recon-

struction Program

Table 5.2: Properties of the Aliascube Dataset

Size: 128x128x128
Zero voxels: 872109
Non-zero voxels: 1225043
Percent filled: 58.41
Voxels of value 50: 612521
Voxels of value 250: 612522

5.4.1 Testing Aliasing Effects

We now rotate the skeleton by 45 degrees, and reconstruct into the volume shown in Fig-

ure 5.18. Figure 5.19 shows cross sections of the same, at various depths. Note that the

squares have remained sharp, and the edges have not been deformed by the transformations.

Such operations test the ability of the reconstruction program to handle aliasing effects and

floating point precision loss errors.

5.4.2 Anti-Aliasing by a Gaussian Kernel

In vector graphics, a straight line stays as a line even when rotated about arbitrary axes.

However, in rastor graphics, since the line exists as a series of distinct points, rotations

54

Figure 5.6: Visible Human Dataset, a Frame From the Jog Sequence

may cause creation of jagged edges, called ‘jaggies’. Volume graphics is similar to rastor
graphics - objects are represented as a series of voxels, and not by their shape. Thus, when
volumes are rotated or otherwise transformed, there is a chance that we shall get jaggies on
our resulting volume. Presence of such artifacts is highly undesirable. Anti-aliasing refers
to the process of smoothing out such jagged edges so that they are not as obvious to the
eye.

As discussed in the preceeding chapters, ReconstructEuclid has a provision for using
a Gaussian smoothing kernel to reduce the effect of ‘jaggies’. The code can be compiled
with the kernel set to 1, 3 or 5 voxels. Setting the kernel to 1 implies direct reconstruction
without smoothing.

In Figure 5.20 we present results from reconstructions of the sample cube using the same
rotation as in the last section, but with added kernel smoothing effects. A subsection of the

same images, magnified 8 times over, is shown in Figure 5.21.

Figure 5.7: Visible Human Dataset, with Hands Stretched Qutwards

55

Figure 5.8: Visible Human Dataset, a Frame from the Wave Sequence

56

Figure 5.9:

Internal Details in Visible Human Animation Volumes

57

Figure 5.10: The Dataset, as Obtained, After Removing Blank Envelope

Figure 5.11: Surface of the Colon Dataset, Extracted After Segmentation

58

Figure 5.12: Articulated Skeleton and a Few Skeleton Points of the Colon

59

Figure 5.13: Final Connectivity Information of the Colon Skeleton

60

Figure 5.14: The Colon Dataset, After Uncoiling with the Animation Pipeline

61

Figure 5.16: Cube Volume to Test Aliasing Results, Viewed from Front Top Right. Volume
size is 128x128x128

Figure 5.17: Euclidean Skeletons of the Aliascube, at Thinness Levels of 1.50, 1.35 and 1.10

62

|

Figure 5.18: The Transformed Reconstruction of the Sample Cube

Figure 5.20: Slices in the Y-Z Planes, different X-values, from the Cube Reconstruction,
Using Smoothing Kernel of 1 (No Smoothing), 3, and 5

63

Figure 5.21: Subsections of Figure 5.20, Magnified 8 Times. Note that Some of the Minor
Artifacts Were Caused by the Magnification in xv

64

Chapter 6

Conclusions and Future work

As a result of this thesis work, the algorithmic bottlenecks in the reconstruction stage
of the volume animation pipeline have been removed. The reconstruction code itself has
been optimized for speed on the Sun E10k machines, and has been tested out with various
datasets.

The reconstruction process is still the bottleneck for the volume animation pipeline.
To improve upon the reconstruction time even further, it will be necessary to make use of
hardware acceleration methods. By the use of hardware, it may be possible to transform
an entire sphere from the original dataset into the transformed volume, without having to
scan through every voxel of the final volume. Specialized hardware routines may be able
to take care of problems of forward mapping, thereby making the order of reconstruction
proportional to the size of the volume alone. If this can be achieved, the current major

speed deterrent - presence of overlapping spheres - will no longer hinder the process.

65

Appendix A

User Manual

A.1 AddHeader.sh

Source: /teal/caipl10/ksen/work/volume/bin/AddHeader.sh

Binary: /teal/caip10/ksen/work/volume/bin/AddHeader.sh

Author: Kundan Sen

Usage: AddHeader.sh [original volume] [zSize] [ySize] [2Size] [new volume]

Adds a header of exactly 100 bytes to the volume. The header is ASCII text, and
contains the x, y and z dimensions of the volume that follows. Volumes with the 100-byte
headers are conventionally named as .VOL - for instance, the volume newcubes.vol would
become newcubes.VOL with the header. Since the header is ASCII data, to check the size

of the volume, simply do a ‘head -1‘ on the volume with the header.

A.2 AddSkel2Vol

Source: /teal/caip10/ksen/work/volume/src/AddSkel2Vol.cpp

Binary: /teal/caip10/ksen/work/volume/bin/AddSkel2Vol

Author: Kundan Sen

Usage: AddSkel2Vol [old volume] [xSize] [ySize] [2Size] [mskel file] [new volume] [skelValue

(255)]

Takes a gray volume, and a skeleton file, and inserts the points in the skeleton into
the volume. By default, these points get a value of 255, but the user can override this by

specifying the alternate value on the command line.

66

To view the output properly, use a colormap that gives a high alpha value to the data
value representing the skeleton points (255, by default), and a lower-than-usual alpha value
to the rest of the colormap. This will make the skeleton points stand out, and the rest of

the volume more transparent.

A.3 AlphaFactor

Source: /teal/caipl10/ksen/work/volume/src/AlphaFactor.cpp
Binary: /teal/caip10/ksen/work/volume/bin/AlphaFactor
Author: Kundan Sen

Usage: AlphaFactor [inputFile] [factor] [outputFile]

Take in an alpha file and reduce all the alpha values by the given fraction. The files are

expected as ASCII, non-indexed format suitable for loading into icol.

A.4 Bob

Source: not available

Binary: hitp://www.arc.umn.edu/gvl-software/gvl.tar.gz
OR: /teal/caipl1/gagvani/quota/packages/bob/bin/bob
Author: University of Minnesota

Usage: bob -s [zSize]r[ySize]z[zSize] [volume file]

Bob was developed by Graphics and Visualization Lab of the Army High Performance
Computing Research Center (AHPCRC) of University of Minnesota. Documentation on bob

can be found at the developer’s website at http://www.arc.umn.edu/gvl-software /bob.html

This is a very easy to use 3-D visualization toolkit that runs on Silicon Graphics machines.

A.5 combineToBinaryVol.sh

Source: /caip/u60/ksen/scripts/combine ToBinary Vol.sh

Binary: /caip/u60/ksen/scripts/combineToBinaryVol.sh

67

Author: Nikhil Gagvani, Kundan Sen

Usage: combineToBinary Vol [source directory] [destination volume file]

A.6 connect2identitytskel

Source: /caip/u60/ksen/male/src/connect2identitytskel.cpp
Binary: /caip/u60/ksen/bin/connect2identitytskel
Author: Kundan Sen

Usage: connect2tskel [connectFile] [transFile] [new tskelFile]

Transforms the connect file information into a tskel file containing identity transforma-
tions. Since the transformations are not taken from the motion capture, but default to
identity matrices, the reconstruction should give the original object. This is particularly
useful to see if the extraction of information from the motion capture sequence is working
properly, since a mismatch will yield a non-recognizable volume after reconstruction.

Of course, reconstruction of an incorrectly transformed sequence will produce a non-
recognizable volume even with the transformations in place, but then we can not localize the
error in the pipeline- it can be with the transformations, with the connectivity information,

or with the reconstruction program itself.

A.7 connect2tskel

Source: /caip/u60/ksen/male/src/connect2tskel.cpp
Binary: /caip/u60/ksen/scripts/connect2tskel
Author: Kundan Sen

Usage: connect2tskel [connect file] [trans file] [new tskel file]

Takes the connect file and the transformations file, and merges the data to form the
transformed skel, or tskel, file. The transformations file (*.trans) and the connect file

(*.connect) must be based on the same articulate skeleton, and the root nodes must appear

68

in the same sequence in either file.
Root nodes that are not connected to any other skeleton points are handled correctly

by this program.

A.8 Convert2Binary

Source: /caip/u60/ksen/male/src/Convert2Binary.cpp

Binary: /caip/u60/ksen/bin/Convert2Binary

Author: Kundan Sen

Usage: Convert2Binary [old volume] [zSize] [ySize] [zSize] [new volume] [[replace by (1)]]

This program is essentially a saturating high-pass filter - it scans the volume for all voxel
values that are non-zero, and replaces the non-zero values by the replace parameter passed.
In the absence of the last parameter, the value defaults to 1.

To convert a volume to a binary (0-1) volume for the purpose of skeletonization, run the
program with the last parameter as ‘1’, or leave out the last parameter entirely. To view a
binary (0-1) volume in conventional tools like view.tcl or bob without having to create a
new colormap, run this program to replace the 1’s with 255, or some other high number, so

that the color defaults to a light shade in the automatic colormap.

A.9 convertall.sh

Source: /caip/u60/ksen/scripts/convertall.sh
Binary: /caip/u60/ksen/scripts/convertall.sh
Author: Nikhil Gagvani, Kundan Sen

Usage: convertall.sh

This script handles automatic conversion of *.dxf frames to *.tskel files for a given motion
capture sequence. The dxf files are placed in the working directory, and the script copied
to the same. The script may need some modifications, such as:

set connectFile="‘/caip/u60/ksen/euclid/half/connects/euclid. 40.culled. connect’

69

set connectionsFile=*/caip/u60/ksen/euclid/half/connections/half.connections’

set bonesFile="‘/caip/u60/ksen/euclid/half/bones/save.euclid. half.iv’

The three lines above set the most common parameters that vary from one sequence to
another. The “connectFile” variable points to the file saved from skelselect that contains
the connections guidelines to be followed for mapping the current sequence. This file defines
the skeleton cloud associated to each bone in the articulated skeleton, and thus indicate
how the entire skeleton should map to the motion capture skeleton extracted from the dxf
files.

The “connectionsFile” variable is not expected to change, unless a new articulate skele-
ton has been designed. This file contains information on how the named joints are connected
to each other. A few lines from the file are shown here:

NEW_L_THIGH BOX NEW _L_KNEE BOX

NEW_R KNEE BOX NEW _R_ANKLE BOX

NEW_L KNEE BOX NEW _L_ANKLE BOX

NEW_R_ANKLE BOX NEW_R_FOOT_BOX

NEW_L_ANKLE BOX NEW_L_FOOT BOX

The order of the points is important, so this file should not be changed unless the user
is sure of what changes are to be carried out.

The “bonesFile” contains the articulate skeleton points in the format acceptable by
Inventor. If the points in the articulate skeleton are adjusted to compensate for minor
breakage, or shifted for some other reason, the coordinates of the bones file have to be

updated to reflect the current coordinates.

A.10 Count

Source: /caip/u60/ksen/male/src/Count.cpp
Binary: /caip/u60/ksen/bin/Count
Author: Kundan Sen

Usage: Count jvolumeFile; jrSizes jySizes jzSizeg

70

Counts the zero and non-zero voxels in the volume, and prints the result to the standard
output. Also prints a histogram showing the general distribution of data in the volume, in
steps of 10, within the unsigned character range of 0-255. The program reads in the volume

in layers, minimizing memory requirements while processing the data.

A.11 CropVolume

Source: /teal/caip10/ksen/work/volume/src/Crop Volume.cpp

Binary: /teal/caip10/ksen/work/volume/bin/Crop Volume

Author: Kundan Sen

Usage: CropVolume [old volume] [cSize] [ySize] [2Size] [xStart] [yStart] [zStart] [zStop]

[yStop] [zStop] [new volume]

This program creates a new bounding box for the volume. If the bounds passed, i.e.
the cuboid defined by the two diagonal points [xStart, yStart, zStart] and [xStop, yStop,
zStop|, are smaller than the volume, a subset of the volume is dumped into the output
file. If, on the other hand, the bounds are larger than the current volume, such as negative
coordinates for the starting point coordinates, or coordinates larger than the size of the
volume for the ending point coordinates, then a suitable padding is applied around the
volume. The padding voxels are filled with zeros.

This program can also be used to extract single slices from a volume, by giving full
extends on two of the axes, and having a difference of one between the start and stop

coordinates of the remaining axis.

A.12 euclidskel

Source: /teal/caipl1/gagvani/quota/modeling/euclid/euclidskel.c++
Binary: /teal/caipl1/gagvani/quota/bin/euclidskel

Author: Nikhil Gagvani

Usage: euclidskel [volfile] [ts] [ys] [zs] [outfile] [thresh] [measureTimeFlag]

71

This program performs skeletonization on the volume passed in the parameter [volfile/
and creates an mskel file containing the multi level skeleton. All voxels having values at
least as large as the threshold [thresh] are considered for the skeletonization process.

The skeleton produced is in Eucledian metric, and is of multi-resolution format, as is
the convention for the mskel file format. To sort the skeleton in the order supported by
tools like skelselect, perform the following command after the skeletonization is complete:
sort +4n -r [outfile] [sortedoutfile]

This will sort the mskel file in decreasing order of thinness, as expected by skelselect.
To extract a thicker skeleton from this mskel file, simply extract lines from the head of the

file until the desired thinness level has been reached.

A.13 Fill

Source: /caip/u60/ksen/male/src/Fill.cpp

Binary: /caip/u60/ksen/bin/Fill

Author: Kundan Sen

Usage: Fill [old volume] [xSize] [ySize] [zSize] [xStart] [yStart] [zStart] [¢Stop] [yStop]

[zStop] [value]

Fills in the entire cube from [xStart, yStart, zStart] up to, but not including, [xStop,
yStop, zStop] with the value passed in the last parameter. Care must be taken before the
bounds are entered, since the data will be destroyed within this bound, and replaced by the

single data value passed as the parameter [value].

A.14 FillSection

Source: /teal/caip10/ksen/work/volume/src/FillSection.cpp

Binary: /teal/caip10/ksen/work/volume/bin/FillSection

Author: Kundan Sen

Usage: FillSection [volfile] [OutVolFile] [zSize] [ySize] [2Size] [[zStart] [yStart] [zStart]

[[zStop] [yStop] [2Stop]]]

72

Fills in the section of the volume within the bounds specified in the parameters with
1’s.

Deprecated. Use Fill instead.

A.15 FitVolume

Source: /teal/caip10/ksen/work/volume/src/FitVolume.cpp

Binary: /teal/caip10/ksen/work/volume/bin/Fit Volume

Author: Kundan Sen

Usage: FitVolume [vol file] [outputVol] [tSize] [ySize] [2Size] [header]

This program fits each dimension of the volume to the nearest integral power of two
that is at least as large as the current dimension. The file is read after an offset equaling
the parameter [header| Bytes. The header is not written back to the final volume. The new
dimensions are printed to the standard output. It is important to note this information
down, preferably by renaming the new volume to reflect the new size (by convention, the
name of the volume would be [filename|.[xSize|x[ySize]x[zSize].vol), since it would be very

difficult to figure out the size once this information is lost.

A.16 flip

Source: /teal/caipl0/ksen/work/volume/src/flip.cpp

Binary: /teal/caip10/ksen/work/bin/flip

Author: Kundan Sen

Usage: flip [volume file] [zSize] [ySize] [2Size] [out file] [flip: [X/Y/Z]]

Flips the volume in-place along one of the major axes. Useful when the volume needs
to be ‘turned’, or coordinate differences between the animation phase and the back-end
support need to be resolved.

Apart from the usual parameters, the last parameter - [flip] - can take in one of the

73

values [x, y, z, X, Y, Z], and indicates the axis of flipping of the volume. As with several
other programs, since the input and output files are opened for reading and writing at the
same time, this program can not be used to do an ‘in-place’ flip of the volume, i.e. flip the
volume into the same filename. Passing the same filename for both the [fvolume file] and

[out file] parameters will result in loss of the volume data.

A.17 float2uchar

Source: /teal/caip10/ksen/work/volume/src/float2uchar.cpp
Binary: /teal/caip10/ksen/work/bin/float2uchar

Author: Kundan Sen

Usage: float2uchar [old volume] [zSize] [ySize] [zSize] [new volume]

Transforms a volume in floating points into unsigned characters. Floating point volumes
are common in tools like AVS (Advanced Visualization Systems). Since all our work in the
domain of volume animation are based on unsigned character volumes, the easiest way to
import a volume from AVS is by transforming it into unsigned characters.

It may be noted that since the data is now normalized into the interval [0-255], minute
differences in data values are lost. In particular, if the data has a very wide range (where
‘range’ is defined as the difference between the maximum and the minimum data value),
but most of the data is concentrated over a very small interval, normalization will lead to
loss of important characteristics of the data. It is advisable to pass the volume through a
histogram utility, and a band-pass filter, to isolate the data value region of interest, before
converting the volume into unsigned characters. For example, if the data range is from
-65536 to +65536, but 90% of the data and/or the region of interest is between 1.0 and 2.0,
pass the volume through a band pass utility, normalizing the values to within the range [1.0

-2.0], and then subject the new volume to conversion by float2uchar.

74

A.18 GenerateHeader

Source: /teal/caip10/ksen/work/volume/src/GenerateHeader.cpp
Binary: /teal/caip10/ksen/work/volume/bin/Generate Header
Author: Kundan Sen

Usage: GenerateHeader [xSize] [ySize] [2Size] [outVol]

Generates a 100-byte header containing the volume dimensions as ASCII text, and prints
it to the output volume [outVol|. This program is called internally from AddHeader.sh, and
need not be called directly unless it is desired to generate the header only, and not append

the volume data to it.

A.19 getskel

Source: CVS Repository

Binary: /teal/caipl1/gagvani/quota/bin/getskel

Author: Nikhil Gagvani

Usage: getskel [filename] [thinness] [flag] [measure TimeFlag]

For binary files : getskel -b filename thinness zsize ysize zsize [flag] [measure TimeFlag]

This program performs skeletonization on ascii or binary files. The output is a skeleton
file of fixed thinness parameter value, and uses the 3-4-5 metric for computation of distance

transforms. Deprecated. Use euclidskel instead.

A.20 getVoxelCount

Source: /caip/u60/ksen/male/src/get VozelCount.cpp

Binary: /caip/u60/ksen/bin/get VorelCount

Author: Kundan Sen

Usage: getVozelCount [volumeFile.vol] [[xSize] [ySize] [2Size]]
OR: getVozelCount [volumeFile. VOL]

75

Counts the number of zero and non-zero voxels in a volume, and prints the result to
standard output. Deprecated - use Count instead, after removing the header for the

.VOL file.

A.21 Icol

Source: not available.
Binary: /teal/caipl1/gagvani/quota/bin/icol
Author: University of Minnesota

Usage: icol

Icol is an interactive colormap editor program, developed by Graphics and Visualiza-
tion Lab of the Army High Performance Computing Research Center (AHPCRC) of Uni-
versity of Minnesota. Documentation on icol can be found at the developer’s website at

http://www.arc.umn.edu/gvl-software /icol.html.

A.22 InterpolateAlpha

Source: /teal/caipl0/ksen/work/volume/src/InterpolateAlpha.cpp

Binary: /teal/caip10/ksen/work/volume/bin/Interpolate Alpha

Author: Kundan Sen

Usage: InterpolateAlpha [firstAlpha/ [lastAlpha] [no. of steps] [[startIndez]]

Generates a number of alpha-map files, which form a linear gradient from the starting
alphamap, [firstAlpha], to the final alphamap, [lastAlpha|. The parameter [no. of steps]
indicates the number of alpha files to be generated to bridge the gap between the end-values.
The parameter [startIndex]| sets the user preference in naming the intermediate alpha files
- if this is omitted, the numbering starts from the default, frameQ.alpha. The files are
compatible to the colormap editing utility, ‘icol’, when fired up in alphamap-editing mode.

If it is desired to keep the length of the numeric section of the filename constant, for

example, name files from frame000.alpha to framel23.alpha, uncomment the first line in

76

the processing loop, comment out the second line, and recompile the program.

A.23 InvCMap

Source: /caip/u60/ksen/color/InvCMap.cpp, hitp://www.cs.utah.edu/gdc/projects/urt/
Binary: /caip/u60/ksen/color/InvCMap
Author: Utah Raster Toolkit

Usage: see page http://www.cs.utah.edu/gdc/projects/urt/

This program takes in the colormap in the file “reducedmap.tzt” , where the file mentioned
has 255 lines, each having red, green, and blue values as integer constants. It now produces
the Voronoi diagram of the colormap provided, in a 24-bit colorspace, i.e. 0-255 in each
axes, as a volume with unsigned characters, “colormap.vol”. To map a 24-bit color to it’s
8-bit equivalent, look up the [R,G,B] voxel in colormap.vol - the data value at the voxel

gives the 8-bit equivalent that maps the 24-bit volume to the colormap in reducedmap.tzt.

A.24 1ivbbox

Source: contact Nikhil Gagvani
Binary: /teal/caipl1/gagvani/quota/bin/ivbbozx
Author: Nikhil Gagvani

Usage: wbboz [Inventor file]

This program takes in an inventor file, and prints the bounds of the object contained
within the file to standard output. To align two inventor representations of the same
volume, for example, to align an isosurface of the visible male with the skeleton, use ivbbox

to compute the bounds of each, and shift the origins of both to their respective centers.

A.25 1ivskeladjust

Source: /caip/u60/ksen/male/src/ivskeladjust.cpp
Binary: /caip/u60/ksen/bin/tvskeladjust

7

Author: Nikhil Gagvani, Kundan Sen

Usage: wskeladjust iwfilel wfile2 outfile

Compares corresponding segments from the two Inventor files passed, and makes the
segments of the first file match in length to those of the second file. Segments are stretched
or compressed, while maintaining their connectivity with other segments within the file.
The output to standard output indicates how well the segments were matched up. It is
imperative to have the two files contain the segments in exactly the same order, since the
n'* segment of the first file is matched up to the n** segment of the second file and adjusted
accordingly. If there are remarkable differences in the two columns printed to the standard
output, then the segments in the two files may not be in the same order.

Note: This file may require modifications that are specific to a particular motion se-
quence. In particular, the dependency graph of the nodes on each other are stored in a
static array in this program, and may require modifications if the number of nodes in the
skeleton is changed, or the dependency is changed in any other manner. In such cases, it is
advisable to make a local copy of the source code in the working directory for the particular

animation, and preserve the code in the archives of the animation.

A.26 meltMan

Source: /caip/u60/ksen/male/src/meltMan.cpp

Binary: /caip/u60/ksen/bin/meltMan

Author: Kundan Sen

Usage: meltMan [tskelFile] [numFrames (20)] [sequenceHeader (meltFrame)]

Creates a ‘melting’ effect by linearly reducing the distance transforms of the tskel file.
Running the program with just the first parameter produces 20 frames, named from melt-

frame0.tskel to meltframe19.tskel. For better results, couple with multiVolumeMelt.

78

A.27 MergeMaps

Source: /teal/caip10/ksen/work/volume/src/MergeMaps.cpp
Binary: /teal/caip10/ksen/work/volume/bin/MergeMaps
Author: Kundan Sen

Usage: MergeMaps [colormap] [alphamap] [lutFile]

Simple program to take an ASCII non-indexed colormap and similar alphamap, both
outputs of icol, merges them to the R-G-B-A format, and prints to the lutFile parameter
passed. The alpha values are normalized to the 0-1 domain, since the lutFile format de-
mands this. The lutFile may now be passed as a rendering parameter to Volumizer-based

programs.

A.28 Merger

Source: /teal/caip10/ksen/work/volume/src/merger.cpp

Binary: /teal/caip10/ksen/work/volume/bin/merger

Author: Kundan Sen

Usage: Interactive mode: merger

OR: Non-interactive mode: merger [input VolumeFileName] [inputSkelFile Name] [output Vol-
umeFileName] [zSize] [ySize] [2Size] [headerLength]

Once the program is started, it prompts for the input volume filename, the input skeleton
filename, and the output volume filename. The program then decreases the intensity of the
original volume, by decreasing the value at each voxel to half of the current value, and
then adds the skeleton points into the volume, marking them with full intensity (250). The
resulting volume is then dumped to the new volume file.

In the non-interactive mode, if all the parameters are passed to the program, the com-
mand line entry is disabled, and the program executes to competion.

This program is useful to see how well the skeleton registered with the volume. When

the final volume is viewed in grayscale mode, we can clearly make out the skeleton points

79

within the volume, specially if a low transparency value (alpha) is used in the colormap.
Note: this program expects a skeleton file, not an mskel file. To convert a mskel file to

a skel file, drop the last column of the mskel file.

A.29 multiVolumeMelt

Source: /caip/u60/ksen/male/src/multiVolumeMelt.cpp

Binary: /caip/u60/ksen/bin/multi VolumeMelt

Author: Kundan Sen

Usage: multiVolumeMelt [volumeHeader] [volStartIndez] [volEndIndezr] [numberOfFrames]
[frameHeader] [acceleration] [[desiredFrame]]

This program is a toolkit for insertion of a parametric crumble effect into an existing
volume animation sequence. The existing volumes are taken by appending integers between
parameters [volStartIndez] and [volEndIndez] to the string parameter [volumeHeader], and

7.vol” to the filename. The parameter [numberOfFrames] indicates how many

adding a
frames the crumbling effect produced from the existing frames should span. [acceleration]
indicates how fast the voxels should fall (‘crumble’) to the base, typically the feet of the man.
If the last parameter, [desiredFrame/, is given, instead of generating the entire sequence,
only this frame is generated, and named as the first frame of the sequence.

This program shifts the voxels to the base (‘floor’) of the volume, with a speed controlled
by the acceleration parameter. When the voxels reach the base, they form a heap, the
height of which is proportional to the number of voxels that reached that point. The effect
produced is that of the volume crumbling and leaving a conical heap on the floor. The color
of each of the heap voxels is the cumulative of the data values of all the voxels that crumbled
into it, with a cut-off set at 255. If this program is coupled with the volumes generated
by meltMan, the effect is one of simultaneous melting and crumbling - a few frames of the
melting sequence can be fed to multiVolumeMelt to produce a large number of crumbling

volumes. When rendering this sequence, the best effects are produced when the notion of

a floor is added at the correct position of the volume, so that the heap formed at the end

80

rests on the floor.

A.30 NewSort

Source: /caip/u60/ksen/color/newSort.cpp
Binary: /caip/u60/ksen/bin/newSort
Author: Kundan Sen

Usage: newSort [inputColormap.txt]

The input colormap is an ASCII text file, with red, green, and blue values stored as
integers. The program sorts the colors, using one or more of the several modules built
into it, and writes the sorted colormap, with the old mapping index, to standard output.
To re-map a volume in the old colormap to the new colormap, split the output into two
text files, the first containing the first column only, forming a lookup table for the remap,
and the second containing all the other columns, forming the new sorted colormap. Follow
up with remapVolume, with the first file passed as the parameter ‘remaplIndexFile’, to

convert the volume to the new colormap.

A.31 OneVolume

Source: /teal/caip10/ksen/work/volume/src/One Volume.cpp

Binary: /teal/caip10/ksen/work/volume/bin/OneVolume

Author: Kundan Sen

Usage: OneVolume [baseName] [startIndez] [stopIndez] [step] [outVol] [threshold]

Combines all the volumes that start with the [baseName], and are followed by numbers
that are in the range of [startindex] and [stopindex], into a single volume. Voxel data values

that fall below the threshold are set to zero.

81

A.32 Peek

Source: /caip/u60/ksen/male/src/Peek.cpp
Binary: /caip/u60/ksen/bin/Peek

Author: Kundan Sen

Usage: Peek [volume file] [zSize] [ySize] [2Size]

Once started up, keeps a file pointer to the volume file passed, and asks the user for
a query point in the volume. If this point is within the bounds of the volume, then the
data value at this point is printed. The volume is expected as a binary file with unsigned
characters, one value per voxel. The file may be modified by Poke or Fill while Peek is
running, and the changes made by the other programs can be seen by all future queries by
Peek without having to re-start the program. Concurrency issues while reading/ writing to

the disk are not dealt with, but are left to the operating system.

A.33 polyr

Source: not available
Binary: /teal/caipl1/gagvani/quota/bin/polyr
Author: Jesper James Jenson

Usage:

This program produces isosurfaces of volumes efficiently. The parameters help us choose
the resolution of the isosurface, by limiting the number of triangles. Keeping the number
of triangles too high produces a huge isosurface file, which takes a lot of time to load up
into the viewer programs, like ivview. Keeping the number too small yields a very coarse

isosurface with most of the details of the structure lost.

A.34 Poke

Source: /caip/u60/ksen/male/src/Poke.cpp
Binary: /caip/u60/ksen/bin/Poke

82

Author: Kundan Sen
Usage: Poke [volume file] [zSize] [ySize] [2Size]

Once started up, keeps a file pointer to the volume passed, and asks the user for a point
within the volume, and the new data value to be saved at that point. If the entry is within
the bounds of the volume, the voxel value is updated. The value is expected to be within
the range of unsigned characters, i.e. [0-255]. The program may be used with Peek, to
update data values and verify the update. Concurrency issues while reading/ writing to the

disk are not dealt with, but are left to the operating system.

A.35 Reconstructl

Source: /caip/u60/ksen/male/src/euclid/Reconstructl.cpp

Binary: /caip/u60/ksen/bin/Reconstruct!

Author: Kundan Sen

Usage: /teal/caip10/ksen/tec/recon/summer00/Reconstruct! [tskelfile]
[origObject] [outObj] [£Size] [ySize] [zSize]

[zMin] [zMaz] [yMin] [yMaz] [zMin] [zMaz]

Fastest reconstruction program in the 3-4-5 metric. The program has most of the opti-
mizations in ReconstructEuclid, but works for the 3-4-5 metric instead of Euclidean. The
parameters are self-explanatory, since they are the basic properties of the volume to be
reconstructed. [origObject] refers to the original volume, the basis of the reconstruction,
[outObj] is the new volume to be generated, [zSize] [ySize] [2Size] form the size of the orig-
inal volume, and [zMin/ [zMaz] [yMin] [yMaz] [zMin] [zMaz] indicate the bounds of the
volume to be reconstructed. It is important to compute the bounds correctly by using a
program like tskelbounds, and to keep in mind that the entire process has to be in the 3-4-5
domain as far as computation of distance transforms are concerned.

The program can be modified in several ways to have customized reconstructions. The

defined values HOTSPOTS, BINRECON, SAMPLED, MOTTLED in the first few lines

83

of the program indicate the chosen mode of reconstruction. Only one of these parameters
should be enabled at any time, and the program compiled to reflect the change. The value
PADDING, following the lines above, indicates if the volume bounds need to be stretched
outwards (padded) to produce an envelope of boundary voxels around the volume.

The program will print errors to standard output. The most common error is voxels
falling off the bounds of the volume. Is this occurs for a small number of voxels, and the
points are off by single-digit voxels (i.e. 1-9 voxels), the easiest way to solve the problem is
to increase the padding. However, if the errors are larger, they are probably due to a more
important reason - check that the tskel file is in 3-4-5 metric, and that tskelbounds is run
in the correct computation mode.

The only difference from Reconstruct (deprecated) is the addition of a stencil buffer
to incorporate the ‘relaxation rule’ - when a voxel falls within the boundaries of several
spheres, the sphere having the minimum distance from it’s center to the voxel in question

is designated to be the owner of the voxel. See details in the thesis.

A.36 ReconstructEuclid

Source: /caip/u60/ksen/male/src/euclid/ReconstructEuclid.cpp

Binary: /caip/u60/ksen/bin/ReconstructBuclid

Author: Kundan Sen

Usage: /teal/caip10/ksen/tec/recon/summer00/ReconstructEuclid [tskel file]
[origObject] [outObj] [£Size] [ySize] [zSize]

[zMin] [zMaz] [Min] [yMaz] [zMin] [zMaz]

This is the fastest reconstruction program to-date for handling sampled reconstruction
in the Euclidean metric of distance transform computations. The basic scan-fill algorithm is
the same as in Reconstructl, modified to accommodate Euclidean transformations instead
of the 3-4-5 notation. This lead to a few more optimizations, which are discussed in the

thesis.

All parameter values have the exact same implications as in Reconstructl, except that

84

the tskel file has to be in the Euclidean metric.

A.37 remapVolume

Source: /caip/u60/ksen/color/remap Volume.cpp
Binary: /caip/u60/ksen/bin/remap Volume
Author: Kundan Sen

Usage: remapVolume [old volume] [cSize] [ySize] [zSize] [remap index File] [new volume]

This program is useful when the colormap of a volume needs to be changed. Since
volumes map to colormaps with mapping indices, the mapping indices need to be converted
to the new values. The parameter [remap indez file] is an ASCII file containing 255 values,
the n?* value replacing all occurrences of ‘n’ in the old volume. The resulting volume is

written to the file /new volume].

A.38 ReverseData

Source: /teal/caipl0/ksen/work/volume/src/ReverseData.cpp
Binary: /teal/caip10/ksen/work/volume/bin/ReverseData
Author: Kundan Sen

Usage: ReverseData [old volume] [zSize] [ySize] [zSize] [new volume]

Reverses the data in a volume by subtracting the current data value from 255, the
maximum value for unsigned characters. The new volume is then written to the file /new
volume]. Since both the input and the output files are opened at the same time, the
destination filename has to be different from the source filename, otherwise the data in the

source filename will be erased before it can be read in.

A.39 rmhdr

Source: Contact Nikhil Gagvani

Binary: /teal/caipl1/gagvani/quota/bin/rmhdr

85

Author: Nikhil Gagvani
Usage: rmhdr [infile] [outfile] [hdrsize]

Removes the mentioned number of Bytes from the start of the file, and prints out the

rest of the file to the new file.

A.40 Skeleton.tcl

Source: /teal/caipl0/ksen/apps/vicl/src/skeleton.tcl
Binary: /teal/caip10/ksen/apps/vtcl/src/skeleton.tcl
Author: Kundan Sen

Usage: skeleton.tcl

This program was to put an easy to use interface to the old volume animation pipeline,
making it simple to manage repeatative tasks like entering the original volume, it’s size,
and the like, at every stage in the pipeline.

The program started with an interface like this:

Once the base volume filename is entered, the corresponding names for the other files
to be created in the pipeline are displayed in the appropriate textfields. The first time a
volume is loaded, the user has to enter the size of the volume in the size textfields. Once
this is done, the interface stores this information in a .size file, so that in the future, the
size of the volume is read in directy from the file.

The program lists several buttons below the textfields, which show the next program to
be run in the pipeline once all the stages above have been completed. The files that already
exist have the file indicator bar to the left of the file description colored green, while those
that are missing have the bar in red. The filename textfields at each stage are followed by
a file browse button, and by a button that points to the viewer for that particular stage, if

any. The large “X” at the bottom of the dialog closes the user interface.

-=.] Skeleton Waerkbench

B

\Base filename w/o extensions|| Update |
% sizel| “H-' Size|| “E Size||
I|'-.-'D1ume file || Bob |

volZoct |

B loct FiTe |

| Wi e |

getske] ”|th1'nness: |

N skel File |

Yo |

Span ”|a1pha:| “cuH: |

I|tree file |

| W ey |

extract_11’n95|

Bitine fite |

|UD><L1' n95|

skelziv |

v it [

| Twiiew |

reconstruct |||extra: |

Bob |

I|recon5truct'i on| |

" [status:||suto-read file size 100 0 0

Figure A.1: Skeleton.tcl - User Interface for the Old Volume Animation Pipeline

A.41 Skelselect

Source: CVS Repository

Binary: /teal/caipl1/gagvani/quota/modeling/mskeltools/skelselect

Author: Nikhil Gagvani

Usage: skelselect [sorted mskelfile] [Bones File] [-s skelfile] [-c connectfile]

86

This is, beyond doubt, the most complicated program in use in the volume animation

pipeline, and deserves detailed use guidelines. The program works in 3 modes, as follows:

87

A.41.1 Selecting the Articulate Skeleton

Selection of the points that go on to create the articulate skeleton is easiest when the
skeleton is loaded up along with the isosurface of the binary segmented volume. This is
because the skeleton itself does not allow us to understand the exact locations of the joints
in the body as well as the isosurface.

For this mode, skelselect is executed in this fashion:
skelselect [mskel file] -s [isosurface file]

It is important to make the isosurface non-pickable by inventor. If the surface is pickable,
then we shall not be able to penetrate it and pick the skeleton points that are contained
within this shell. This is accomplished by adding the following lines to the beginning of the

isosurface Inventor file:

PickStyle {

style UNPICKABLE

}
Material {

transparency 0.5
}

The lines may be inserted anywhere before the start of the list of points.

Once the surface and the skeleton points have been loaded up, select the ‘Select Skel’
mode of operation. In this mode, every pair of points selected by clicking the mouse on
them will be joined with a white line, and will be saved as a part of the bones file. By
checking the box marked ‘Remove Lines’, an incorrect line may be erased by clicking on it.
To form connection A - B - C, connect A - B, select B again, and connect to C. To save
the articulate skeleton, click on the ‘save skel’ button. This saves the skeleton as a save.iv
file, in Inventor format. Here are some hints and tips to make the process of selecting the
articulate skeleton easier:

¢ Before selecting a point, make sure there is no parallax error in visualizing that point

- since all points look roughly the same, it is very difficult to make out points in the hands

88

from points well within the abdomen area. Rotate the volume in every axis until it is certain
that the point is located in the correct region.

e The skeleton in it’s full thinness is too cluttered to work upon. It is easier to search for
favorable points using a skeleton with greater thinness, and gradually decrease the thinness
to find a better point that is close to the first one. To change the thinness of the skeleton,
drag the thinness slider - the greater the thinness, the lesser the number of visible points.

e When the mouse is clicked on a valid point, the coordinates of the point are printed to
the console. A valid point is defined as any point that can be selected - clicking on a line,
or the isosurface shell, may not select a valid point. It is important to observe this screen
when selecting points, as the coordinates are a sure way of detecting the spatial position of
the point and avoid any parallax errors.

o If it is difficult to select the skeleton in proper order, an easier way is to note down
the coordinates of each point selected to be a part of the skeleton, and create the bones file

by hand, inserting the points in the correct order.

A.41.2 Selecting the Root Node

Once the articulate skeleton has been selected in the previous step, the skeleton is saved,
and skelselect is closed. If required, the skeleton file (typically, save.iv) is edited by hand
to make the points fall into the same order as mentioned in the connections file.

Once this is done, we have to connect the cloud of skeleton points surrounding each
segment / bone of the articulate skeleton, so that all these points are given the same
transformation as the bone, when the motion capture information is applied to the bone.
For this, we load up skelselect thus:

Skelselect [mskel file| -s [bones file]

Once loaded up, we have to assign indices to the bones, so that the connect file that
we shall save contains the segments in the order that is expected by the pipeline. For this,
increase thinness to maximum by dragging the thinness slider to extreme right. Only the
bones should be visible now. Click on the radio-button marked ‘Select Root’ to set the
mode. Now click on the root nodes in the sequence that has been decided for the animation

sequence. In our case, the visible human’s right thigh (to the left of the viewer) was selected

89

as node 0, followed by left thigh, and so on to the palms of the feet, followed by the abdomen
and chest segments to the neck and head, followed by the arms traversed exactly like the
legs, in right-left alternating manner. It is important to decide on a sequence and stick to
it, as every new sequence would require changes to several program source codes.

The segments are colored as they are clicked on. The colors are taken from a palette
of 12 colors, so the colors cycle after a while. The program prints out the index of each
segment to the console as it is clicked on. These indices should be verified with the expected

values.

A.41.3 Selecting the Skeleton Points to Join the Selected Root Node.

Once all the segments have been clicked on (and have become colored), we start connecting
the skeleton points to these bones. While still in the previous mode, click on a segment
to select that segment as the working bone. Verify the selection by the index printed on
the console. Click on the radio-button marked ‘Select Cube’ to enter the cloud connection
mode. Clicking on any skeleton point will now draw a cube centered at that point. The
size of the cube can be varied with the slider to the bottom right of the screen. When a
satisfactory cube has been placed, click on ‘connect’ to attach all points within the cube
to the working bone segment. Since the boundaries of the different regions of the dataset
can not be well defined by a cube selection cursor, it is important to keep the size of the
cube small, and make the selection of the region in multiple passes, in order to get proper
connectivity. Connectivity is the most crucial part of the volume animation pipeline, and
unless it is done as best as possible, the reconstruction process will yield unsatisfactory
results.

As the points are connected to the bones, they will get colored with the same color as
the bone. If a cube has been wrongly connected, click on ‘remove’ to remove all connectivity
information from the enclosed points. To make the process of placement of the cube easier,
start with a higher thinness value, and decrease as the points get connected, to trap the
points close to the surface.

Once a region has been defined, move on to the next segment by repeating from the

root selection step.

90

To save the connectivity information, click ‘save’, and enter the filename in the console
window. By convention, these files are named as ”[sequence].[thinness].connect”, thinness
being the position of the slider when the save was clicked. Only those points having thinness
greater than the value of the slider are saved when the button is clicked.

Note: As of now, this program can not load up a connect file, so the only way to re-
connect a skeleton to it’s articulate counterpart is to re-start from scratch and connect all
over again. For instance, if a volume is all connected, the connect file saved and skelselect
exited, and then the reconstruction phase indicates slight breakage in the shoulder, then
skelselect has to be loaded up again with the original bones file and the mskel file, and the
process of connecting the skeleton points has to be started all over again.

To avoid this, it’s advisable to have skelselect running continuously until reconstruction
is carried out with satisfactory results.

Quick tip: To toggle between the selection and the move cursors of skelselect, hit
the escape key. This is standard with most applications that are built on the Inventor

interface.

A.42 SortTskel

Source: /caip/u60/ksen/male/src/euclid/SortTskel.cpp

Binary: /caip/u60/ksen/bin/SortTskel

Author: Kundan Sen

Usage: /teal/caip10/ksen/tec/recon/summer00/SortTskel [tskel file] [sorted output]

This program sorts the skeleton points associated to each root node of the tskel file in
decreasing order of their distance transforms, and prints the new tskel file to [sorted output/.
It has been observed that it is easier to measure progress of reconstruction when the
skeleton points associated to a single root node are thus sorted. This way, when a root node
is selected, the speed of reconstruction of the spheres associated to it follow an exponential
curve, since reconstruction time per sphere decreases exponentially with the radius of the

sphere. The progress is indicated by the number of points reconstructed, which is printed

91

at regular intervals to the standard output by the reconstruction programs, Reconstructl

and ReconstuctEuclid.

A.43 teleportMan

Source: /caip/u60/ksen/male/src/teleportMan.cpp

Binary: /caip/u60/ksen/bin/teleportMan

Author: Kundan Sen

Usage: teleportMan [tskel file] [number of frames (20)] [sequence header (meltFrame)] [de-
siredframe])

This program works similar to meltMan in creating the melting sequence by decreasing

the distance transforms associated to each skeleton point.

A.44 TiffTolfl

Source: /teal/caipl10/ksen/work/volume/src/Tiff Tolfl.cpp
Binary: /teal/caip10/ksen/work/volume/bin/Tiff Tolfl
Author: Kundan Sen

Usage:: Tiff Tolfl [tiffFile] [ifiFile]

Converts a tiff image file into IFL (Image Format Library) format. See man ifl for more

information on supported IFL formats.

A.45 TightBounds

Source: /teal/caip10/ksen/work/volume/src/TightBounds.cpp
Binary: /teal/caip10/ksen/work/volume/bin/Tight Bounds
Author: Kundan Sen

Usage: TightBounds [old volume] [new volume] [-silent]

92

-=-i Kundan’s workbench ; a i|;|.j
Yolume filename :]l
¥ 5ize ¥ Size
Z 5ize Header
Compute size | 0

Fun Yolume to Raw converter |

Convert raw files to IFL format |

Consolidate IFL files into tiff Fﬂel

Cleanup temp files |

| Raw to Volume convertion done

Quit!

Figure A.2: Toolbar.tcl - User Interface for Volume to tiff Converter

Compacts a volume by removing the blank space around it. The volumes are expected

to have the standard 100-Bytes headers - which are generated by AddHeader.sh.

A.46 Toolbar.tcl

Source: /teal/caipl10/ksen/apps/vicl/src/toolbar.tcl
Binary: /teal/caip10/ksen/apps/vtcl/src/toolbar.tcl
Author: Kundan Sen

Usage: toolbar.tcl

This program brings up a basic user interface for scripts to convert a volume in .vol
format to a 3D tiff format. The interface looks like this:

The program loads up with blank values in the textfields. The volume filename can
either be typed in at the textfield, or the file selected from a browse popup window which
can be brought up by clicking on the browse button to the right of the filename textfield.

The size of the volume is then entered in the appropriate textfields, and the ‘Compute Size’

93

button is clicked. This is to confirm that the size of the file has been entered correctly -
the number in the size textfield should be the same as the actual size of the file, seen with
a command like Is -1 [filename] in the shell.

Once the volume file has been entered, the buttons pointing to the scripts are clicked
in sequence. After each button is clicked, the status indicator text shows what is being
done, and the status indicator bar goes red. If the program being executed ends succesfully
without errors, the bar will go green, and the interface is ready for the next stage. Errors

reported from the program are brought up in pop-up message boxes, if any.

A.47 View.tcl

Source: /caip/u60/ksen/bin/gagvani/view.tcl
Also: /teal/caipl1/gagvani/quota/bin/view.tcl
Binary: /caip/u60/ksen/bin/gagvani/view.tcl
Author: Nikhil Gagvani

Usage: view.tcl [vtk volume file]

This is a very simple Vtk/ Tcl program to view a volume a slice at a time. To convert a
volume to the vtk format, use the utility Vol2Vtk. The program fires up a graphical screen
with a slider to inspect the volume. The volume is applied a linear gray colormap, with the
range [0-255] depicted as [black - white]. The slider below the volume panel can be dragged
to view a particular slice in the volume.

To view binary segmented [0-1] volumes, convert the voxels having value ‘1’ to value

‘255’ using an utility like Convert2Binary, and having 255 as the replace parameter.

A.48 Vol2Vitk

Source: Contact Nikhil Gagvani

Binary: /teal/caipl1/gagvani/quota/bin/vol2vtk

Author: Nikhil Gagvani

Usage: Vol2Vik [volume file] [vik file] [zSize] [ySize] [zSize]

94

Converts a volume from .vol format to the .vtk format, the latter being compatible to
the Visualization Toolkit. See vtk user guides for more information on the vtk format.
The first few lines of the vtk file contain information such as the size of the volume, spacing,

size of data at each voxel, and the like. This information can be extracted by a command

like head -5 [vtkfile].

A.49 VolumeSuperDiff

Source: /teal/caip10/ksen/work/volume/src/euclid/VolumeSuperDiff.cpp
Binary: /caip/u60/ksen/bin/VolumeSuperDiff

Author: Kundan Sen

Usage: VolumeSuperDiff [voll] [vol2] [zSize] [ySize] [zSize] [out Volume]

Computes the difference between two volumes of the same size, on a voxel by voxel basis.
The results are printed to a third volume, also of the same size. The voxels in the output
volume can have one of 4 values: 0, indicating the voxel has the same value in both the
volumes.

100, for voxels that have a non-zero value in the first volume only.
150, for voxels that have a non-zero value in the second volume only.

200, for voxels that have different non-zero values in the two volumes.

A.50 Vtk2Vol

Source: Contact Nikhil Gagvani

Binary: /teal/caip11/gagvani/quota/bin/vtk2vol
Author: Nikhil Gagvani

Usage: vtk2vol [vik file] [volume file]

Converts a vtk file to a .vol format. The .vol format is a binary file with raw data,

95

ordered by x, then y, then z, without any header, and consisting of one byte of unsigned

char data per voxel.

A.51 Zap

Source: /caip/u60/ksen/male/src/Zap.cpp
Binary: /caip/u60/ksen/bin/Zap

Author: Kundan Sen

Usage: Zap [volume file] [xSize] [ySize] [2Size]

Replaces in-place all data in the file with zeros. Use with caution, as the original volume
will be lost. Particularly useful when working with parametric computational solid geometry

programs, and it is desired to re-start from a clean slate.

96

Appendix B

Troubleshooting

o The Skeleton Does Not Appear Centered - It’s More Like A Surface Mesh.

The segmented volume used for skeletonization has holes in it. Regions within the
volume fell below the threshold while performing segmentation, leaving these holes.

If the threshold can be reduced, try segmenting at a lower threshold.

Verify absence of holes in the resultant binary volume by loading up the slices in a
viewer like view.tcl after converting the 0-1 binary volume to 0-255 binary volume,

using a program like Convert2Binary to convert the 1’s to 255’s.

If the resultant volume still has holes in it, use Fill to fill in the holes manually. Verify

proper filling with view.tcl, following steps above.

If the threshold required for producing a completely filled volume fails to exclude
some speckled points in the boundary, use Fill, with ‘0’, to erase the noise from the

boundary.

When a neatly filled in volume is passed to any of the skeletonization programs, a
neatly centered skeleton, with points radiating out all the way to the surface, will be

produced.

e The Size of the Color Volume is Much Larger Than the Product of it’s Dimensions

Follow steps described under the volume animation pipeline to reduce the volume
to 8-bit color. If the volume is already in 8-bit color, either the size information is
incorrect, or there is a header preceding the data values. Guessing the correction in
either case is near to impossible unless the size of the correct volume is known, or can
be computed otherwise. If the size of the volume is known, and it can be concluded

that the size difference is due to a header, use rmhdr to remove the header.

97

Note: if the volume has been given a header by ‘AddHeader.sh’ (in which case, by
convention, it should be named as “[VOLUME NAME IN CAPITALS].vol”) the size

of the header is exactly 100 Bytes.

Skelselect Gives A Core Dump and Exits When Loaded Up With the Skeleton and
the Bones File

All the points in the articulated skeleton must be contained in the cloud of skeleton
points loaded from the mskel file. In case the articulated skeleton was produced by
selecting points not present in the skeleton cloud, insert these points at the very end
of the mskel file. Assign a Distance transform (DT) less than 3, and a thinness less
than the smallest thinness, to these points. A token thinness of 0.01 and token DT of

1 will ensure non-participation of these points in the reconstruction process.

Note: If these additional points are given high DTs, they will take active role in the

reconstruction process, and can significantly alter the appearance of the final volume.

The final volume appears broken at the joints

This may result from several different factors, and is the most common trouble to run

into while running the pipeline. The most common causes of this are:

a) The connectivity is incorrect. Re-connect the skeleton points to the articulate
skeleton using skelselect. While connecting near the breakage, adjust to compensate
for the breakage - if, for example, the shoulder breaks to leave a part of the upper arm
fixed to the shoulder while the rest of the arm moves away, move the points in the
upper arm to the bone segment in the upper arm instead of the bone of the shoulder.
If, on the other hand, a part of the shoulder moves away with the arm, do the reverse
- lessen the attachment to the upper arm. Every such case is different, and has to be

resolved on a case-by-case basis.

Use the tools tskel2iv and iskel2sph to verify proper connectivity in the surface

domain before going through the time-intensive sampled reconstruction process

b) The choice of points for the articulate skeleton can be improved upon. If,

for instance the point in the knee is selected too much to the front, the knee is bound

98

to break when the foot is bent forward - this is because the reconstruction process
does not compensate for stretching of the joints, but merely rotates them about the
articulate skeleton points. Move the points in the articulate skeleton as much to the
center as possible. On special cases, such as when it’s known that the foot will only
bend backwards, move the knee point to the best position for that particular sequence,

that minimizes breakage at the point.

The final volume, when rendered, does not make any sense - it looks like a speckled

object without any sensible coloring

The colormap is incorrect in some way. In most cases, this is because the colormap
is not sorted by visual gradient of the colors - the anti-aliasing effect of the rendering
engine produces colors that are blends of the neighboring voxel color indices, and lead
to random values. See section under “Sorting the colormap” in the volume animation

pipeline on how to sort the colormap and resolve this issue.

The final volume has flipped palms for hands and feet

This may result from several factors, but the most common case is misaligned axes
- the coordinate system of the motion capture sequence is different from that of the
back-end processing and reconstruction. Usually, this difference can be compensated
by one or more rotations - in steps of 90 or 180 degrees - in each of the axes. Modify the
code in ivskelgetrot to compensate for this rotation before comparing the segments
to figure out the transformation matrices. Look at the code for ivskelgetrot for

comments on how to do this.

The final volume has some of the segments rotated out of the volume

This is also caused by the difference of coordinates discussed above.

The final volume has the torso reversed / rotated in crazy angles

This can happen when the abdomen and chest area is selected as a single bone in
the articulated skeleton. This is because, when two straight lines are compared for

rotations, the rotations about themselves (i.e. about an axis that coincides with the

99

length of the line) can not be figured out. This would not happen if the anima-
tion package returned the exact rotations each segment undergoes. However, in our
pipeline to date, the animation pipeline only returns the point coordinates, and the
exact transformations are figured out by reverse-computation, and so rotations about

the axis of any segment can not be figured out correctly.

To avoid this, select the articulate skeleton as a zigzag line through the chest and

abdomen region.

Error in executing extractpoints.tcl - “no such point”.

The output of the animation package has to follow the same naming convention for
points as defined in the connections file. Check for inconsistencies in naming the
points - common errors are like naming ‘LEFT FOOT’ in the connections file and

‘LEFT LEG’ in the animation sequence, or ‘TORSO1’ and ‘CHEST1’.

The animation has been rendered, but the camera keeps swinging for every frame.

The current rendering engine uses the VTK toolkit to render the volume. The camera
in this package is always centered at the center of the volume. If each frame in the
sequence has been reconstructed to a final volume of a different size, then the camera
will adjust itself to center on each of these volumes, and create a swinging effect. To
avoid this effect, use tskelbounds or euclidtskelallbounds to compute the volume

bounds for the entire sequence of frames, and not just a single frame.

The reconstruction program reports voxel out-of-bounds errors

The bounds of the volume are not correct. Check the bounds with tskelbounds.
Make sure the bounds for sequences using the FEuclidean distance metric are computed
with the -e flag in ¢skelbounds, otherwise the program will (incorrectly) return the 3-
4-5 bounds. Similarly, passing the -e flag to a 3-4-5 volume will return an incorrect

result.

100

References

[1] The National Library of Medicine’s Visible Human Project.
http://www.nlm.nih.gov/research/visible /visible_human.html.

[2] D. Meagher Geometric Modeling Using Octree Encoding. Graphical Models and Image
Procesing, 19:129-147, 1982.

[3] C. Arcelli and G. Sanniti di Baja. A Width-Independent Fast Thinning Algorithm.
IEEE Transactions on Pattern Recognition and Machine Intelligence, 7(4):463-474,
1985.

[4] W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm. In Maureen C. Stone, editor, Computer Graphics (Proceedings of
SIGGRAPH 87), volume 21, pages 163-169, July 1987.

[6] J. Lasseter Principles Of Traditional Animation Applied To 3D Computer Animation
ACM Computer GraphicsVolume 21, Number 4, July 1987

[6] R. Drebin, L. Carpenter, and P. Hanaran. Volume Rendering. Computer Graphics
(SIGGRAPH 88 Conference Proceedings) ,pages 65-74. ACM SIGGRAPH, 1988.

[7] T.H.H. Cormen, R.L. Rivest and C.E. Leiserson. Introduction to Algorithms MIT
Press November 1990.

[8] F. Aurenhammer. Voronoi Diagrams: A Survey of a Fundamental Geometric Data
Structure. ACM Comput. Surv., 23(3):345-405, September 1991.

. Beier and S. Neely. Feature-based Image Metamorphosis. Computer Graphics
9] T. Bei d S. Neely. F based Image M hosis. C Graphi
(Proceedings of SIGGRAPH 92), 26(2):35-42, July 1992.

[10] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and Tomographic
Reconstruction Using Texture Mapping Hardware . In Arie Kaufman and Wolf-
gang Krueger, editors, Symposium on Volume Visualization, pages 91-98. ACM SIG-
GRAPH, October 1994.

[11] S. Marschner, R. Lobb. An Evaluation of Reconstruction Filters for Volume Rendering.
In Proceedings of Visualization, pages 100-107, October 1994

[12] E. Horowitz, S. Sahni and D. Mehta. Fundamentals of Data Structures in C++ W.
H. Freeman Company, February 1995.

[13] J.L. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, August 1995.

[14] G. Borgefors. On Digital Distance Transforms in Three Dimensions. Computer Vision
and Image Understanding, 64(3):368-376, November 1996.

101

[15] N. Gagvani. Skeletons and volume thinning in visulaization. Thesis (MS)-Rutgers
University, 1997.

[16] N. Gagvani, D. Kenchammana-Hosekote, and D. Silver. Volume Animation Using The
Skeleton Tree . In IEEFE Volume Visualization Symposium, pages 47-54, October 1998.

[17] A. Brentzen et. al The Carpeaux Gallery. http
//linl.gk.dtu.dk/home/jab/carpeauz /gallery.html, August 1995.

[18] M. Heller. Developing Optimized Code with Microsoft Visual C++ 6.0. In Microsoft
Developer Network online library (MSDN), March 1999.

[19] N. Gagvani and D. Silver. Parameter Controlled Volume Thinning. Graphical Models
and Image Procesing, 61(3):149-164, May 1999.

[20] B. Stroustrup. The C++4 Programming Language Addison Wesley Longman, Inc.,
December 1999.

[21] V. Chandru, N. Mahesh, M.Manivannan, and S. Manchar. Voxel-based Sculpting and
Keyframe Animation System Computer Animation Conference, May 2000.

22| N. Gagvani and D. Silver. Shape-based Volumetric Collision Detection. In Proc. IEEE
g
Volume Visualization Symposium, pages 57-61, October 2000.

[23] N. Gagvani. Parameter-Controlled Skeletonization — A Framework for Volume Graph-
ics Thesis (PhD)-Rutgers University, 2001

[24] A. Bhattacharya. An Interactive Volume Animation Toolkit. Thesis (MS)-Rutgers
University, 2001

