
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Feature Aligned Volume Manipulation for Illustration and
Visualization

Carlos D. Correa, Student Member, IEEE, Deborah Silver, Member, IEEE, and Min Chen
Abstract—In this paper we describe a GPU-based technique for creating illustrative visualization through interactive manipulation
of volumetric models. It is partly inspired by medical illustrations, where it is common to depict cuts and deformation in order to
provide a better understanding of anatomical and biological structures or surgical processes, and partly motivated by the need for
a real-time solution that supports the specification and visualization of such illustrative manipulation. We propose two new feature-
aligned techniques, namely surface alignment and segment alignment, and compare them with the axis-aligned techniques which
was reported in previous work on volume manipulation. We also present a mechanism for defining features using texture volumes,
and methods for computing correct normals for the deformed volume in respect to different alignments. We describe a GPU-based
implementation to achieve real-time performance of the techniques and a collection of manipulation operators including peelers,
retractors, pliers and dilators which are adaptations of the metaphors and tools used in surgical procedures and medical illustrations.
Our approach is directly applicable in medical and biological illustration, and we demonstrate how it works as an interactive tool for
focus+context visualization, as well as a generic technique for volume graphics.
Index Terms—Illustrative visualization, Illustrative manipulation, GPU computing, volume rendering, volume deformation, computer-
assisted medical illustration

F

1 INTRODUCTION

In science, medicine and engineering, hand-drawn illustrations often
include manipulating part of an object to depict the stages and outcome
of a procedure, uncover hidden features, or reveal the spatial relation-
ship between different components of the objects. Such manipulation
typically includes the following characteristics:

• It often contains cuts and dissections, which, for example, are
commonly found in illustrations of surgical procedures as exem-
plified by Figure 1(b).

• It may allow feature-sensitive operations, which can be applied
to a semantic component of the object, such as the skin in Figure
1(b), without affecting other parts of the object.

• It may enable ubiquitous operations, which can be applied to var-
ious parts of the object with different geometric transformations,
as shown in Figure 1(d).

• It can facilitate virtual operations, which do not necessarily con-
form to the reality, such as the unreal flaps used to illustrate
anatomical structure in Figure 1(d).

In the context of illustrative visualization, we refer to such manipu-
lation as illustrative manipulation, which provides a means for spec-
ifying and realizing visualization that contains cuts, dissections, dis-
tortion, and various other forms of deformation that are not present in
the original data. For example, in Figure 1(a), the skin layer (as the
context) of the hand is manipulated using the metaphor of “retractors”
to reveal the bones or vessels (as the focus), facilitating an illustrative
visualization with focus+context. In Figure 1(c), a number of virtual
manipulation operations are applied to the visible human dataset to
achieve an illustrative visualization in a manner similar to a classical
anatomic illustration, without resorting to the complex and sometimes
contentious processes employed by some contemporary exhibitions.

It is, however, not intended to provide a physically-based simulation
of the internal and external forces involved in the deformation or the

• Carlos D. Correa and Deborah Silver are with the Department of
Electrical and Computer Engineering, Rutgers, The State University of
New Jersey, E-mail: cdcorrea, silver@caip.rutgers.edu

• Min Chen is with Department of Computer Science, University of Wales,
Swansea, E-mail: m.chen@swansea.ac.uk

Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

physical interaction between the tools and different parts of the object.
Although physically-based modeling is critical to applications such as
surgical simulation, and could ultimately be desirable for illustrative
manipulation, a huge computational cost is necessary for any realis-
tic modeling and simulation of a combination of physical behaviors
such as elastic and plastic deformation, fractures, stress-strain curves
of complex materials, including skins, soft tissues, body fluids, etc.
Hence, for illustrative manipulation, one must give the priority to the
interactivity and operatability in the process of realizing illustrative
visualization.

In this paper, we propose a feature-based technique for manipulating
volumetric objects for illustrative visualization, and describe a GPU-
based implementation that enables interactive specification and ren-
dering such visualization. Inspired by medical illustrations that fre-
quently depict the results of manipulation with tools such as peel-
ers, retractors and pliers, we allow the specification of manipulation
through a collection of procedurally-defined manipulation operators.
Because we place a significant emphasis on the interactivity and op-
eratability, we need to address a number of conflict technical require-
ments, for example, (i) between the axis-aligned volume texture stor-
age and the arbitrary geometry of features, and (ii) between the nor-
mals on a cut surface and the gradient-based normals within the origi-
nal volume.

When specifying a cut or peel, one important consideration is “align-
ment”. Here, aligned manipulation refers to those cuts or peels that
are applied to certain layers while other features of interest are pre-
served. The simplest is axis-aligned, which aligns the operator with
the axis-planes. It is feature-insensitive and is applied to all points
within the volume bounds. This however is not always satisfactory as
the “object” within the volume is not necessarily cubic. We introduce
two feature-based methods, namely surface alignment and segment
alignment for modeling and rendering illustrative manipulation, and
compare them with the traditional axis alignment method. We devise
a method for estimating accurate normals along the surface of cuts
and dissections while maintaining continuous normals, which allows
us to obtain correct shading of the object being manipulated, opaque
or translucent.

We built our approach on the general concept of space warping [1],
which was traditionally realized using ray casting without interactiv-
ity. We provide an efficient GPU implementation for allowing illustra-
tive manipulation to be specified and rendered at interactive rates, and
we demonstrate the technical feasibility and usability of our approach
by applying various illustrative manipulation to a number of volume
datasets interactively on a Pentium XEON 2.8 GHz PC with a Quadro

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

(a) (b) Illustration (c) (d) Illustration

Fig. 1: Feature-aligned volume manipulation (a) A feature-aligned retraction applied to a human hand data set, showing bones (left) and vessels
(right) (b) Surgical illustration of a hand (Copyright c©2006 Nucleus Medical Art. All rights reserved. www.nucleusinc.com) (c) Multiple peel and cutting
away operators applied to the visible human data set (d) Illustration of human anatomy with dissected “flaps”, by Antonio Scrantoni and Paolo
Mascagni, 1833 (U.S. National Library of Medicine), similar to exhibitions such as BodyWorlds [22], and Bodies, the Exhibition [9].

FX4400 graphics card.

2 RELATED WORK

Illustrative visualizations are often associated with cutaway visual ef-
fects [7] and non photorealistic rendering [8]. This paper is concerned
with the former aspect of illustrative visualization, and in particu-
lar, we are interested in creating feature-based cutaway visual effects
through interactive manipulation of volume datasets.

McGuffin et al. [15] proposed a set of interactive manipulation wid-
gets to browse volume data using forward mapping. They used in-
dividual voxels as rendering primitives, which can be directly trans-
formed, allowing the modeling of effects such as cuts and openings.
While voxels were grouped into segments as features for manipulation,
the rendering did not involve connectivity information. It was thereby
difficult to achieve good quality visualization, and aliasing was no-
ticeable especially in close-up views or with large deformation such
as stretch.

An alternative approach is to implement manipulation operations us-
ing backward mapping. The basic idea, space warping, was first out-
lined by Barr [1], and was realized for volume manipulation through
the notion of ray deflectors [13] and spatial transfer functions [5, 12].
Both [13] and [5] employed ray casting for sampling the deformed
space, hence high quality rendering was attainable. However, both
provided only a brute-force solution to compute the normals of the de-
formed or dissected objects, and neither considered feature-sensitive
manipulation. Furthermore, due to the computational costs involved,
this ray-casting approach for volume manipulation is not yet able to
support interactive manipulation on current desktop computers.

There has been a series of efforts for achieving interactive volume ren-
dering by exploiting GPU capacities (e.g., [24, 18, 21]). Westermann
and Salama [25] utilized 3D texture mapping hardware to achieve in-
teractive deformation of volume datasets. Rezk-Salama et al. [19]
used general purpose rendering hardware, coupled with edge and face
constraints, to facilitate the adaptive subdivision of piecewise patches
of a volume object. Singh and Silver [20] used mid-plane geometry to
specify and render deformation about joints of visible human, in con-
junction with texture mapping hardware. In order to obtain normals
that correspond to the deformed volume, Westermann and Salama [25]
employed an approximate solution based on a two-pass rendering ap-
proach [17]. Rezk-Salama et al. [19] obtain normals via a linear ap-
proximation of the gradient. Chen et al. [3] use raycasting and employ
inverse mapping to achieve deformation. Weiskopf et al. [23] pre-
sented a technique for estimating the normals of clipped volumes with
a weighting function for blending the normals near the boundaries of
the clipping plane. Correa et al. [6] employed generalized displace-
ment mapping as means to achieve real-time manipulation of volume

data. Nevertheless, [25], [19] and [3] implemented mainly continu-
ous deformation without cuts, while [23] and [6] considered mainly
axis-aligned operators.

The work presented in this paper brings together the desirable ele-
ments of the above-mentioned previous work. We draw the feature-
based approach from [15] in order to create more meaningful illus-
trative visualization. We draw the backward mapping approach from
[13, 5] in order to facilitate complex manipulation operators and max-
imize the rendering quality at interactive speeds. We extended the
use of segment based features in [15] by introducing manipulation
based on surface features. We further extended the normal calculation
method in [23] by allowing normal adjustment along features of inter-
est. For the first time, we have delivered complex visual effects, such
as feature-based peeling and opening, interactively with a rendering
quality comparable to non-interactive solutions such as [5]. As men-
tioned in Section , this work is not intended to provide a physically-
based simulation of various manipulation, for which there is a rich
collection of literature ([11, 4, 16]).

3 MANIPULATION OPERATORS

A manipulation operator is a metaphor for a transformation mapping
from the original volumetric space to a dissected or deformed volumet-
ric space. From the perspective of a user, such an operator functions
like a surgical tool, such as a pair of retractors, and can be used to
perform an illustrative manipulation on a volumetric model. In this
work, we designed and implemented four types of operators, namely

Peeler Retractors Pliers Dilator

Fig. 2: Iconic representations of four manipulation operators, and
example medical illustrations showing similar metaphors. Drawings
courtesy of the U.S. National Library of Medicine. Dilator illustration
is copyright c©medmovie.com.

CORREA et al.: FEATURE ALIGNED VOLUME MANIPULATION FOR ILLUSTRATION AND VISUALIZATION

peeler, retractors, pliers and dilator. Figure 2 shows the iconic rep-
resentation of these operators as applied to a simple volume object,
and each is accompanied by a medical illustration that exemplifies the
operator. All four operators are procedurally defined, and each is as-
sociated with a set of parameters, such as operatable size, distortion
scale, etc., which can be changed interactively. These operators can
be placed anywhere on or within the volumetric model. The trans-
formation of the operators over the volume model or its features is
determined dynamically during rendering (see 3.2). The detection of
self-collision between different parts of the volume model is not fea-
tured in the current implementation, because of the computational cost
for providing a meaningful feedback rather than the cost for detection.
Nevertheless, self-collision can be prevented by interactively modi-
fying the parameters of a manipulation operator. Below we describe
briefly the functionality of the four operators, and further examples of
their use can be found in Section 6.

Peeler. The peeler simulates peeling or cutting of the outer layers
of a volumetric model. In Figure 3, a peeler with cylindrical fold-
back is shown applied to the CT head dataset. Different parameters
of the peeler, such as thickness of the cut and the angle of bending of
the peeled layer, can be manipulated interactively to obtain different
illustrative effects. For example, the different virtual flaps in Figure
1(c) are obtained by placing multiple peeler operators around the body
and varying their parameters.

Retractors. In the context of surgical illustration, retractors are tools
used to spread organs or bones, or to hold back soft tissues such as
skin. In the context of illustration, they are useful for illustrating the
access to the internal organs.

Pliers. Pliers are tools used to grasp tissue and pull it or poke it into
the volumetric object. The operator parameters include the shape of
the displacement and the radius of influence which specifies how the
displacement propagates through the volume. In Figure 2, the pliers
are shown pulling a blood vessel.

Dilator. Dilators are used to gain access into narrow regions, cuts
or vessels. They essentially scale the region from the inside typically
by blowing air, to increase the visibility or accessibility of the region.
When applied to volumetric manipulation, dilators have a similar ef-
fect to that of volumetric magic lenses [14].

3.1 Manipulation Alignment

When using the manipulation operators, we define two properties:
alignment and placement. Alignment here refers to the preservation
of interesting features while operating, giving the impression that it
is aligned with features. Placement, on the other hand, refers to the
movement in 3D space of the operator. For example, in Figure 3(c),
the operator is said to be aligned with the brain tissue, since the peeler
appears to follow its contour. Placement of the operator defines how
deep is the cut, or in which direction. This paper addresses the prob-
lem of alignment. Manipulation operators can be aligned with one of
the three main axes, which are intuitive to place in three dimensional
space, and easy to implement in conjunction with a texture-based vol-
ume renderer. Axis alignment is usually limited, since very rarely fea-
tures of interest are planar. This limitation can be seen in Figure 3(a).
In this paper, we propose two feature aligned techniques for allowing
manipulation operators that are sensitive to the specific features on a
volume model. We consider surface features that are defined by an
iso-surface, and volume features that are define by a segment, result-
ing in the notions of surface-aligned and segment-aligned manipula-
tion operators respectively. The merits of such alignments can be seen
Figures 3(b) and 3(c).

Consider the skin of the head as the context, and the brain as the focus
of these visualizations. From Figure 3(a) where a peel is performed us-
ing axis-alignment, we can observe that the part being peeled is wedge
shaped and the operator cuts through the brain. The visualization con-
veys limited information about the part in focus. Feature alignment

(a) Axis Alignment (b) Surface Alignment (c) Segment Alignment

Fig. 3: An example of different types of alignment. (a) Axis aligned
peel. Note how the peeled layer is thick and flat, since it is aligned with
an orthogonal axis. (b) Surface aligned peel, aligned with a computed
distance field. Notice how it approximates a surface. (c) Segment
aligned peel, based on segmentation, which is more accurate. Note
that in the feature based alignment (b) and (c) the peel is thin and
rounded.

corrects this problem. Virtual surfaces are created without segmenta-
tion (except for background), using a distance field computation. The
distance field is computed based on a boundary, from which virtual
shells of different thicknesses can be defined. For example, in 3(b), a
surface-aligned peel is applied to the top of the head with a uniform
depth from the surface of the skin. Such alignment can be used to in-
vestigate and illustrate layered structures without the pre-knowledge
of segmentation. However, while this is a good approximation , the
operator still cuts through the brain. If we have the specification of
volume features, typically obtained from segmentation or defined by
a range of iso-values, we can create a more effective focus+context
visualization. In 3(c), with the segmentation knowledge of external
layers including the skin and skull, we apply a segment-aligned peel
to the head. The brain, that is, the focus, is not only highlighted but
also visualized with correct geometry. In addition, the correct shad-
ing at the back of the peel provides further meaningful context to the
visualization.

3.2 Volume Manipulation

In this work, volume manipulation is defined as point-wise mapping
that transforms positions of all points in an axis-aligned bounding vol-
ume V to new positions. Let PV be a set of all points in V . For each
point p ∈ PV .

p′ = TF (p) p = T−1
F (p′) (1)

where TF denotes a forward transformation and T−1
F the correspond-

ing inverse transformation. Hence, we obtain a new set P′
V = {p′|∀p ∈

PV , p′ = TF (p)}. Let V ′ be the new axis-aligned bounding volume for
all the points in P′

V . Unlike the majority of previous work on volume
deformation, TF and T−1

F are not necessarily continuous. While the
forward transformation is intuitive, it has several shortcomings. First,
it is difficult to know the boundary of the new volume V ′ after the
manipulation without evaluating TF analytically. One solution to this
difficulty is for the user to specify such a bounding volume. Second,
it is difficult to render a manipulation operator that involves cuts and
dissections. Consider a retractor and a dilator. The former spreads
the points apart and introduces empty space between the transformed
points, while the latter stretches the points but maintains continuity

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fp’=T (p) BT (p’)=T (p’)F
−1

T =B

Bp =T (p’)

p = p’

p =

p p’
M

p’

case 1:

case 2:

case 3:

Fig. 4: Forward (left) and backward (middle) transformation of a re-
tractor tool, modeled as a displacement in the direction of the retrac-
tion. For the backward transformation, points in the cuts are trans-
formed to the empty value ∅. Right: feature-aligned transformation.
The extra test cases for backward mapping are shown.

between the discretely sampled points in V ′. Regardless whether it is
in the image space or the new object space V ′, it is not possible for a
rendering algorithm to determine if it should interpolate between the
transformed points. Third, as the transformation is often non-linear, it
is difficult to estimate an effective sampling resolution of the final vol-
ume in relation to the original volume V . For example, this problem
was exhibited in [15] where sampling resolution was set to one sample
per voxel, resulting in unintentional discontinuity when stretching any
part of the volume. The most effective way to overcome this problem
is to employ the inverse transformation T−1

F , provided that the first
issue can be correctly resolved.

3.3 Modeling Cuts

Modeling cuts and dissections is not trivial when using a mesh or sur-
face representation. A common approach would be to subdivide a sur-
face mesh to account for the new surface information that arises from
the breakage. However, most surface models assume a 0-thickness
boundary representation with either empty or homogeneous solid in-
terior, which are not suitable for illustrative manipulation. Complex
multi-layer shell representations are therefore necessary, which may
lead to further computational costs in determining collision between
operators and objects. In addition, the manipulation would not be eas-
ily reversible, as combining meshes is another non-trivial problem in
surface modeling.

On the other hand, the volume representation does not suffer from the
above shortcomings. In volume manipulation, cuts and dissections
can be modeled as point-wise mapping and do not involve explicit
geometric operations. As mentioned in Section 3.2, the use of inverse
transformation T−1

F provides a means for high-quality rendering, but
may encounter the problem of undefined transformation in the cut area.
Ideally, for any forward transformation, TF from PV to P′

V , we should
always have its corresponding T−1

F , such that, for each point p′ ∈ P′
V ,

there exists p ∈ PV and p′ = TF (p). However, this condition cannot be
easily met, because we actually sample the bounding volume V ′ rather
than the unknown point set P′

V , and V ′ is likely to contain points, for
instance, in a cut area, which do not have a pre-image in V .

Let P′
V ′ be a collection of all points in V ′. Since P′

V is a set of all points
located in V ′ with a pre-image in V , the empty space in V ′ is thus
defined by a set of points P′

empty = P′
V ′ −P′

V . We thereby replace the
T−1

F in Eq.(1) with a modified backward transformation TB as:

p = TB(p′) =

{

T−1
F (p′) p′ ∈ P′

V
∅ p′ ∈ P′

empty
(2)

where ∅ denotes a null position, indicating a point that does not have
an origin prior to the manipulation. In general, such points are con-
sidered empty, or completely transparent. We thereby assume that,
for purposes of rendering, the opacity value associated with ∅ is 0.
An example is shown in Figure 4, where the forward and backward
transformation of a retractor tool is illustrated. Note that for sampling

points in the interior of the cut, the inverse transform is defined as an
empty value. In feature-aligned manipulation, TB needs to be used in
conjunction with Eqs.(3) and (4).

4 FEATURE-ALIGNED MANIPULATION

One requirement for illustrative manipulation is the ability to align cuts
with features of interest. Therefore it is necessary to have a means for
specifying such region. We introduce a masking function M, which
defines the feature-sensitivity of points in the original volume V , and
is typically represented by a volume dataset. When M(p) ≥ 0.5, p is
part of the feature to be preserved, and cannot be transformed. An
example of this is shown in Figure 3(c) where the peel is applied to the
skin and not to the brains (which is masked as a feature of interest).
Let PM be the subset of PV , such that PM = {p|p ∈ PV ,M(p) ≥ 0.5},
and VM is an axis-aligned bounding volume of PM . Any point not in
PM is operatable. In addition, the backward transformation function
of each manipulation, TB, is also accompanied by a bounding volume,
VT , such that the manipulation is only performed over those points
residing in VT .

It is possible that the inversely transformed point, p′, does not have a
pre-image in PV , or p′ has been masked as non-operatable by M. To
handle the complexity associated with VT and VM , we introduce an
initial “probe” p0, for each point p′ ∈ P′

V ′ as follows:

p0 =

{

TB(p′) p′resides inVT
p′ otherwise (3)

We then obtain p by taking the feature mask into account as:

p =

p0 p0 ∈ PV ∧ (M(p′) < 0.5∧M(p0) < 0.5)

p′ p′ ∈ PV ∧M(p′) ≥ 0.5
∅ otherwise

(4)

These three cases are shown in Figure 4 right, namely: (Case 1):
the point is transformed, (Case 2): the point is masked and therefore
untransformed, and (Case 3): the point is empty due to the feature-
aligned cut.

Normal estimation is an essential part of the rendering of graphical
objects. Following the same rules as Eq. (4), the normal at a point p′
is defined as:

∇T (p′) =

∇J(p′) p = T−1
F (p′)

∇(p) p = p′
0 p = ∅

(5)

where ∇T denotes the gradient of the transformed point, ∇(p) denotes
the original gradient, ∇J denotes the gradient at the sampling point p′,
and 0 is the zero vector. ∇J can be obtained using finite differences
on the deformed object. However, this would involve computing the
inverse transformation of the adjacent neighbors of p′, and would be
computationally expensive for real-time rendering. Instead, ∇J can be
estimated at each point via the inverse transpose of the Jacobian of the
transformation, as proposed in [1]. The normal transformed via this
method is then denoted here with a subscript J.

4.1 Axis Alignment

For axis-aligned manipulation, all points residing in V are operatable,
which is equivalent to PM = {}. Eq. (4) is thus simplified to:

p =

{

p0 p0 ∈ PV
∅ otherwise (6)

The normal estimation is also simplified for this case, which reduces
to computing ∇J in most cases. The only challenge here is the com-
putation of the normal in the presence of cuts. Rather than deriving a

CORREA et al.: FEATURE ALIGNED VOLUME MANIPULATION FOR ILLUSTRATION AND VISUALIZATION

T
*
T

α

D

(a) Axis Alignment

DT= τ

DT= τ+δ

DT

T
T
*

DT= τ−δ

(b) Surface Alignment (based on distance field)

*

MV =0.5

MV =1

T

V =0.5M

MV =0

T
T−

(c) Segment Alignment

Fig. 5: Normal blending for the different alignments in the boundaries of cuts. Green arrows indicate the estimated normal from the Jacobian,
red arrows are the normal orthogonal to the surface of the cut (propagated along the blending region), and the blue arrows indicate the corrected
normal after blending.

complex formula for adjusting the Jacobian in the proximity to cuts,
we compute the Jacobian on a continuous version of the transforma-
tion, where “holes” are filled with valid points. We then estimate a
more accurate normal by adjusting the gradient in the vicinity of cuts,
by blending from the transformed normal ∇T , to the “expected” nor-
mal from the surface of the cut, which we denote as ∇α . The blending
function can then be defined as:

∇∗
T (p′) = (1−ω)∇T (p′)+ω∇α (p′) (7)

where ω ∈ [0,1] is a weighting function that decreases with the dis-
tance to the discontinuity, i.e., for a point in the boundary, ω = 1, and
for a point at a pre-defined distance D from the boundary, ω = 0. This
parameter ω controls the gradient smoothness of the cut surface, and
it is similar to the “impregnation” region described by Weiskopf et al.
in [23] for performing volumetric clipping. The blending mechanism
is depicted in Figure 5(a).

Standard manipulation operators can be placed anywhere within the
volume by allowing TB and its bounding volume VT to align with
an arbitrary axis plane. The general mechanism for performing such
alignment is to transform the coordinate frame of the operator before
applying it to a volume. As an inverse warping problem, this is equiv-
alent to applying the inverse coordinate transformation to the sampled
points p′, that is, referring to Eq. (2) we have:

p = A×
(

TB(A−1 × p′)
)

(8)

where A is a 4× 4 affine matrix, which is constant for all the points
in the sampled volume. Normals can be obtained by concatenating the
Jacobians of the affine transformations with the Jacobian of the manip-
ulation operator, which only requires a multiplication by two constant
matrices. Manipulating operators is supported by this mechanism for
arbitrary axis alignment.

4.2 Surface Alignment

As stated previously, for certain manipulations axis alignment is not
sufficient. Peeling is one such manipulation, since generally the peel-
ing operation is applied to a specific surface layer of an object. In this
case, feature-based alignment is desired. If features are not segmented
or preassigned, an approximation can be obtained by defining a mask
based on distance from the surface. This can be done with the distance
field of the volume, after a background segmentation. Let us define
DT as the distance field stored as a volume. Then, the mask M can
be defined such that M(p) ≥ 0.5 for DT (p) ≥ τ , and M(p) < 0.5, for
DT (p) < τ . Here τ > 0 is a parameter that specifies the desired dis-
tance from surface. For instance, τ can be thought of as the “depth”
of the peeled surface, which is to be transformed in order to reveal the
feature underneath.

Estimation of the normals requires special handling of the boundary
around the cut surface defined by DT (p) = τ . For a feature point (i.e.,
M(p) ≥ 0.5) the gradient of the distance field ∇DT , points outwards

from the interior to the surface. However, for a non-feature point on
the boundary (i.e., M(p) < 0.5), the gradient ∇DT points incorrectly
from the surface to the interior. We solve this by using a signed weight-
ing function β . We thus have:

∇∗
T (p′) = (1−|β |)∇T (p′)+β∇DT (p′)

β =

τ−DT (p)
δ −1 τ −δ < DT (p) < τ

τ−DT (p)
δ +1 τ ≤ DT (p) < τ +δ

0 otherwise
(9)

β is used to gradually blend the normal of the distance field with the
transformed normal. Note that it is asymmetric with respect to τ . That
is, for a point with DT in the interval [τ,τ +δ), β ranges from 1 down
to 0, but for a point with DT in the interval (τ − δ ,τ), β takes values
from 0 down to −1. This negative weighting blends the transformed
normal ∇T and the normal between the normal of the distance field in
the opposite direction. This results in correct normals at both sides of
the break. This is illustrated in Figure 5(b), and an example of surface-
aligned peeling is shown in 3(b).

4.3 Segment Alignment

Segment alignment is obtained by defining M(p) based on a volume
feature, that typically is determined through segmentation. It can be
seen quite easily that the above technique for surface alignment can be
extended to handle an arbitrary volumetric mask by replacing DT (p)
directly with M(p). Normal adjustment is handled as follows:

First, we assume that the gradient of the original volume is computed
with the aid of the segmentation information, stored as a volume tex-
ture. This correctly estimates the surface gradient of the features of
interest. Further, for the boundary between two features, the normals
on either side point to the opposite direction of those of the other side.
This leads to a problem in texture-based volume rendering, since tri-
linear interpolation of these opposite normals would yield an incorrect
zero gradient. To overcome this problem, we estimate the gradients for
segmented data so that they always point outwards from the feature of
interest on both sides of the boundary. When computing the gradient
volume texture using finite differences, we consider the values of the
neighbors of a voxel as 0, if they correspond to a different segment or
an empty voxel, or as 1 if they correspond to the segment of interest.

Finally, we invert the normals in the non-feature side of the cut fol-
lowing the blending mechanism in Section 4.2. To define a thick area
where this blending can be possible, we assume that the mask M(p)
defines a smooth scalar field. The region where we need to invert the
directions of the normals is defined by the isosurfaces M(p) = 0.5 and
M(p) = 0, as shown in Figure 5(c). This results in the following equa-
tion:

∇∗
T (p′) = (1−2γ)∇T (p′)

γ =

{

2M(p) 0 < M(p) < 0.5
0 otherwise (10)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 6: Segment alignment (left) vs. Two-pass rendering on two pre-
segmented datasets (middle). Note how the bone segment is properly
classified on the left. The insets on the right highlight the aliasing
effect of the two-pass rendering (bottom), while there is no noticeable
aliasing with the segment alignment (top).

Previous approaches for achieving the same results of segment align-
ment often use pre-segmented datasets and two-pass rendering, where
the segment of interest to be preserved is rendered first, and then the
non-feature part of the volume is manipulated and rendered afterwards.
However, this approach results in aliased boundaries, because of pre-
segmentation, and in incorrect post-classification of boundary voxels.
Figure 6 compares our method with this alternative. Note that on the
left, segment alignment properly classifies the bone voxels, while the
two-pass rendering (middle) gives a tint similar to the color of the skin.
On the right, the two insets highlight the different levels of aliasing on
the bone segment. Although these problems can be addressed with
pre-smoothing and pre-processing of colormaps, our approach works
on a single pass and requires no pre-processing of the dataset or the
colormap.

5 GPU IMPLEMENTATION

For real-time manipulation, a GPU implementation has been devel-
oped. It is based on texture-based view-aligned slice volume render-
ing [24]. We assume that the original volumetric object is stored as
a 3D texture. In traditional volume rendering, the view-aligned slices
are used to sample the 3D texture at regular intervals. In our approach,
we sample the deformed space, i.e., we will be performing inverse
mapping. The feature mask M is also stored as a 3D texture. There
are a number of ways of defining the transformation TB of an operator:
explicitly in the fragment shader, which is usually computationally ex-
pensive, or sampled in a volumetric domain and stored in a 3D texture.
The latter involves the pre-computation of the transformation a priori,
and storage on a texture of the result of the operation, as described in
[2] or a 3D displacement, as described in [6]. We chose 3D displace-
ments because of its flexibility and generality. The union of all the
operators and the original volume creates V ′. This is then sliced along
the view direction. As each slice is rendered, a fragment is generated
for each pixel in the image. Thus, each fragment generated by ren-
dering a single slice corresponds to a point in the deformed volume.
First, the corresponding point in the undeformed volume is found by
evaluating Eq. (4). Then, the original volume is sampled to find the
voxel density values. In Eq. (4), voxel positions defined as ∅ should
not contribute to compositing, so they are defined as having opacity
zero. To obtain the correct color attributes, the normals must be deter-
mined, by evaluating Eq. (5). The normal of each fragment requires
at most three gradient texture samples: the normal obtained from the
transformation (∇T), as discussed in Section 4.1, the normal of the
cut (∇α), and the normal of the feature mask, depending on the align-
ment. These are blended together as shown in Eqs. (7), (9) and (10).
The gradients can also be stored as textures to speed up computation.

The GPU memory requirements for this process are predominantly de-
termined by the resolution needed to store the volumetric dataset (e.g.,
the head dataset requires 2563 bytes and its gradient requires 3×2563

bytes). An additional requirement is imposed by the pre-computation
of the manipulation operators. However, these are in general very
small compared to the 3D volume data. When resources are scarce,
normals can be computed on the fly using finite differences, not only
for the original dataset, but also for the alignment mask and the oper-
ator itself.

5.1 Multiple Manipulations

We have considered the case of a single manipulation applied to a
volumetric model. However, as seen in Figure 1(c), it is possible to
apply several operators simultaneously to a single dataset. We con-
sider here two distinct cases for introducing multiple manipulations.
In the first case, each operator represents an independent manipulation
on the dataset, and the result of one does not affect the other. We treat
each operator as its own proxy geometry, and the original dataset as a
“background” proxy geometry. When rendering the scene, the bound-
ing box for each operator is sampled independently with the appropri-
ate manipulation parameters. Finally, the scene is composed with the
slices resulting from all the intervening operators. However, overlap-
ping with the background volume may occur. A stencil is used to mask
out the operator regions so they are not rendered twice. An example is
shown in Figure 1(c).

When manipulations overlap, this case is more complicated, since it
requires us to define an algebraic operation for the combination of two
operators. There are a number of ways to deal with this situation. For
example, if the dataset is segmented, each “segment” (i.e., skin vs. or-
gans) is sliced independently, and the resulting slices are composited
into a single image. This can be seen in Figure 10(d) where the retrac-
tor operator is used to open the skin of the frog, while a plier operator
is used to poke and pull the internal organs. Another way is to save the
intermediate volume into a new dataset and used the saved volume to
apply other operations. These approaches are under investigation.

6 APPLICATIONS

One of the applications of feature-aligned volume manipulation is
medical and biological illustrations. In Figure 1(b), an illustration
from hand surgery is shown. Figure 1(a) demonstrates a retraction
operator on a CT hand mimicking the same type of cut. Figure 1(d) is
an image from the illustration of human anatomy by Antonio Scran-
toni and Paolo Mascagni, dated 1833 (NLM). Interestingly, this image
is very similar to contemporary exhibitions such as BodyWorlds [22]
and Bodies, The Exhibition [9] which portray dissections of actual
bodies. Figure 1(c) shows a similar type of operation applied to the
Visible Man dataset. The dataset was first posed using [10] to position
the arm upright. Five peel operators were then applied to both arms.

Figure 7 shows a volume manipulation similar to illustrations of fore-
foot surgery using the retractor operator. Figures 7(a) and (b) show
the result of surface-aligned manipulation, for a distance parameter of
τ = 0.08 and τ = 0.026, respectively (τ = 0 corresponds to the surface
of the dataset). Figure 7(c) shows the result of segment-aligned manip-
ulation to obtain a better visualization of the bone tissue. 7(d) shows
a close-up view of another cut, where it is possible to see different
features by applying different layer levels. In the upper image, only
bones are visible, whereas in the lower portion, we can see the vessels
and muscle tissue below the skin. Figure 8 shows the dilation operator
applied to a colon dataset. This is an affine alignment along a por-
tion of the colon. The bounding box of the operator, is shown, so too
part of the bounding box of the original volume V . Figure 9(a) shows
a retraction around the torso which moves tissue and reveals internal
organs. In Figure 9(b) the plier operator pushes an occluding artery
to reveal the spine. Figure 10 shows an application of feature-aligned
manipulation, where a retractor operator is applied to the segmented
frog dataset. In order to do this, we define the manipulation mask as
the skin and muscles, so the internal organs remain untransformed.

CORREA et al.: FEATURE ALIGNED VOLUME MANIPULATION FOR ILLUSTRATION AND VISUALIZATION

Alignment Dataset Resolution fps
Axis foot 143×256×183 20.44

stag beetle 208×208×123 9.24
visible human 2mm 256×189×436 6.27
cthead 256×256×256 5.06

Surface foot 143×256×183 18.31
stag beetle 208×208×123 7.32
orange 256×256×256 6.11
cthead 256×256×256 3.93

Segment foot 143×256×183 17.95
hand 255×250×155 5.54
frog 250×235×68 8.08

Table 1: Performance results for different volume datasets, with d =
1.0 for the distance between view aligned slices of the volume

The last image shows a plier operator deforming one of the organs in-
side the frog. Figure 11 shows an illustration of the peeling of the stag
beetle dataset, where a surface aligned peeling is used to remove only
the outer layers. Figure 12 shows a peeled orange. The peel is defined
using surface alignment.

In addition to illustration-like effects, the manipulation operators also
improve on clipping and slicing and generate focus+context visual-
izations. Now slices can be arbitrary geometries, and there is a fo-
cus+context mechanism (peeling) for keeping the sliced portion in
view. In Figure 3(c) one gets to see the underside of the peel or skin.
Other examples can be seen on the accompanying video, and online
at: http://www.caip.rutgers.edu/˜cdcorrea/feature.

7 PERFORMANCE EVALUATION

Since we follow a slicing approach to render our scenes, rendering
performance is mainly influenced by the fragment shader capabilities
of the graphics board. The rendering speed is affected by a number
of factors, including: sampling distance of the slices, resolution of the
object, viewport size, and the number and the relative size of the op-
erators with respect to the volume. We implemented the manipulation
operators within an interactive program which allows the user to rotate
and scale the object, to move or change the operator, and to change the
color map or lighting parameters.

Our test configuration consists of a Pentium XEON 2.8 Ghz PC with
4096 MB RAM, equipped with a Quadro FX 4400 (512MB). We
tested our approach on a number of datasets, ranging in size from 1283

to 2563, in a 512× 512 viewport. Table 1 shows the results obtained
with our test datasets for the different alignment cases and a slicing
distance of 1.0. For higher quality rendering, a distance of d = 0.5 can
be used. In this case, the rendering rate was found to be exactly one
half of the rate with d = 1.0.

8 CONCLUSIONS

We presented a general mechanism for interactive manipulation of vol-
umetric models, which enables the creation of illustrative visualization
with complex deformation involving cuts, dissections and other forms
of manipulations. We described a new approach that allows the ma-
nipulation operators to be aligned to the features of interest. With
both surface and segment-based features, more complex manipula-
tion effects can be realized, representing a further generalization of
the traditional axis-oriented volume manipulation technique. We pre-
sented several mechanisms for estimating accurately the normals in
the deformed volume space and described a feature-sensitive mech-
anism for adjusting normals in the vicinity of cuts. We provided a
GPU-based implementation that renders illustrative manipulation in
real time with a quality that is comparable with that obtained using
the non-interactive raycasting method. Future research involves ef-
ficiently implementing overlapping manipulations, investigating user
interface and usability issues, using these techniques for virtual reality

applications, and the inclusion of other operators. Through a number
of examples, inspired by medical and biological illustrations, we have
shown that this technique provides the necessary interactivity and op-
eratability in the process of creating various manipulation effects in
illustrative visualization.

ACKNOWLEDGEMENTS
Volumetric datasets are courtesy of Lawrence Berkeley Laboratory, UNC Chapel Hill, Uni-
versity of Iowa, U.S. National Library of Medicine, Viatronix Inc. and Viena University
of Technology. We want to thank Dr. Stanley Trooksin, Dr. Sid Roychowdhury and Dr.
Marsha Jessup for valuable input on surgical and medical illustration. The illustrations in
the paper are courtesy of medmovie.com and Nucleus Medical Art, Inc.

REFERENCES
[1] A. Barr. Ray tracing deformed surfaces. Computer Graphics (Proc. SIG-

GRAPH 86), 20(4):287–296, 1986.
[2] T. Brunet, K. Nowak, and M. Gleicher. Integrating dynamic deforma-

tions into interactive volume visualization. In Eurographics /IEEE VGTC
Symposium on Visualization 2006, pages 219–226, 2006.

[3] H. Chen, J. Hesser, and R. Männer. Ray casting free-form deformed-
volume objects. J. of Vis. and Computer Animation, 14(2):61–72, 2003.

[4] M. Chen, C. Correa, S. Islam, M. W. Jones, P.-Y. Shen, D. Silver, S. J.
Walton, and P. J. Willis. Deforming and animating discretely sampled
object representations. In Eurographics State of the Art Report, 2005.

[5] M. Chen, D. Silver, A. S. Winter, V. Singh, and N. Cornea. Spatial trans-
fer functions: a unified approach to specifying deformation in volume
modeling and animation. In Proc. Volume Graphics ’03, pages 35–44,
2003.

[6] C. Correa, D. Silver, and M. Chen. Discontinuous displacement mapping
for volume graphics. In Proc. Volume Graphics ’06, 2006.

[7] J. Diepstraten, D. Weiskopf, and T. Ertl. Interactive cutaway illustrations.
Comput. Graph. Forum, 22(3):523–532, 2003.

[8] D. Ebert and P. Rheingans. Volume illustration: non-photorealistic ren-
dering of volume models. In IEEE Visualization, pages 195–202, 2000.

[9] B. T. Exhibition, 2005.
[10] N. Gagvani and D. Silver. Animating volumetric models. Graphical

Models, 63(6):443–458, 2001.
[11] S. Gibson and Mirtich. A survey of deformable modeling in computer

graphics. Technical Report TR97-19, MERL Technical Report, 1997.
[12] S. Islam, D. Silver, and M.Chen. Volume splitting and its applications.

IEEE Transactions on Visualization and Computer Graphics, To appear.
[13] Y. Kurzion and R. Yagel. Interactive space deformation with hardware-

assisted rendering. IEEE Comput. Graph. Appl., 17(5):66–77, 1997.
[14] E. C. LaMar, B. Hamann, and K. I. Joy. A magnification lens for inter-

active volume visualization. In Pacific Graphics 2001, pages 223–232,
2001.

[15] M. J. McGuffin, L. Tancau, and R. Balakrishnan. Using deformations for
browsing volumetric data. In IEEE Visualization 2003, pages 401–408,
2003.

[16] A. Nealen, M. Muller, R. Keiser, E. Boxerman, and M.Carlson. Phys-
ically based deformable models in computer graphics. In Eurographics
STAR Report, 2005.

[17] M. Peercy, J. Airy, and B. Cabral. Efficient bump mapping hardware. In
Computer Graphics, Proc. SIGGRAPH ’97, pages 303–307, 1997.

[18] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive
volume rendering on standard PC graphics hardware using multi-textures
and multi-state rasterization. In Proc. SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, pages 109–118, 2000.

[19] C. Rezk-Salama, M. Scheuering, G. Soza, and G. Greiner. Fast vol-
umetric deformation on general purpose hardware. In Proc. SIG-
GRAPH/Eurographics Graphics Hardware Workshop 2001, pages 17–24,
2001.

[20] V. Singh, D. silver, and N.Cornea. Real time volume manipulation. In
Proc. Volume Graphics 2003, pages 45–51, 2003.

[21] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible
volume rendering framework for graphics-hardware-based ray casting. In
Proc. Volume Graphics 2005, pages 187–195, 2005.

[22] G. von Hagens’ Bodyworlds, 2005.
[23] D. Weiskopf, K. Engel, and T. Ertl. Interactive clipping techniques for

texture-based volume visualization and volume shading. IEEE Trans.
Vis. Comput. Graph., 9(3):298–312, 2003.

[24] R. Westermann and T. Ertl. Efficiently using graphics hardware in volume
rendering applications. In Computer Graphics (Proc. SIGGRAPH 98),
pages 279–296, 1998.

[25] R. Westermann and C. Salama. Real-time volume deformations. Com-
puter Graphics Forum, 20(3), 2001.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

(a) (b) (c) (d)
Fig. 7: Retractor operator applied to a CT foot dataset. (a-b) Surface alignment with two different layer depths, one revealing bone, and the
other reveals superficial veins. (c) Segment alignment showing bone tissue. (d) Zoomed-in surface aligned cut.

Fig. 8: Dilation operator applied to a colon dataset. (a) Without dila-
tion (b) With dilation. Bounding area of dilation is shown. Dilation
works as a type of volumetric lens.

Fig. 9: Manipulation operators used to improve visibility on a CT
dataset. The spreader (a type of retractor) moves tissue and reveals
internal organs. (b) The pliers push an occluding artery to reveal the
spine. This works as a focus+context visualization.

(a) (b) (c) (d)
Fig. 10: (a-c) Retractor operator used to simulate dissection of a segmented frog dataset. (d) A plier operator is applied to the internal organs,
while simultaneously retracting the skin. Geometric models are embedded in the scene to show the placement of the operators.

Fig. 11: Surface-aligned peeling of the stag beetle dataset. Note how
the internal features can be seen by lifting the wing shells.

Fig. 12: Surface-aligned peeling of an orange. The internal struc-
ture of the orange is clearly visible without the need of segmentation.
Different placement of the operator shows two stages of an orange
peel

